

Energy Source	QBtu / % (1994)	QBtu / % (2003)	QBtu / % (2011)
Hydroelectric	3.037 / 3.43	2.779 / 2.83	3.171 / 3.26
Geothermal	0.357 / 0.40	0.314 / 0.32	0.226 / 0.23
Biomass	2.852 / 3.22	2.884 / <mark>2.94</mark>	4.511 / 4.64
Solar Energy	0.069 / 0.077	0.063 / 0.06	0.158 / 0.16
Wind	0.036 / 0.040	0.108 / 0.11	1.168 / 1.20
Total	6.351 /7.18	6.15 / 6.3	9.135 / 9.39

CSD	Р	hysics 12
	Another look at available energy flow	
•	The flow of radiation (solar and thermal) was covered in Lecture 11 - earth is in an energy balance: energy in = energy or 30% reflected 70% thermally re-radiated	ut
•	 Some of the incident energy is absorbed, but we exactly does this do? much goes into heating the air/land much goes into driving weather (rain, wind) some goes into ocean currents 	vhat
	 some goes into photosynthesis 	
Spr	ing 2013	4

Spring 2013

Hydro and Wind

UCSD Physics 12 Power of a hydroelectric dam Most impressive is Grand Coulee, in Washington, on Columbia River -350 feet = 107 m of "head" ->6,000 m³/s flow rate! (Pacific Northwest gets rain!) - each cubic meter of water (1000 kg) has potential energy: $mgh = (1000 \text{ kg}) \times (10 \text{ m/s}^2) \times (110 \text{ m}) = 1.1 \text{ MJ}$ - At 6,000 m³/s, get over 6 GW of power • Large nuclear plants are usually 1–2 GW • 11 other dams in U.S. in 1–2 GW range • 74 GW total hydroelectric capacity, presently Spring 2013 12 $0x^2$

UCSD	Phys	ics 12
	Hydroelectricity in the future?	
•	We're almost tapped-out:	
	 - so% of potential is developed - remaining potential in large number of small-scale un 	its
•	 Problems with dams: silt limits lifetime to 50–200 years, after which dam is useless and in fact a potential disaster and nagging maintenance site habitat loss for fish (salmon!), etc.; wrecks otherwise 	3
	 stunning landscapes (Glenn Canyon in UT) Disasters waiting to happen: 1680 deaths in U.S. alon from 1918–1958; often upstream from major population centers 	e
Spr	ing 2013 Q	15

Region	Potential	Developed	Undeveloped	% Developed
New England	6.3	1.9	4.4	30.1
Middle Atlantic	9.8	4.9	4.9	50.0
East North Central	2.9	1.2	1.7	41.3
West North Central	6.2	3.1	3.1	50.0
South Atlantic	13.9	6.7	7.2	48.2
East South Central	8.3	5.9	2.4	71.1
West South Central	7.3	2.7	4.6	36.9
Mountain	28.6	9.5	19.1	33.2
Pacific	64.4	38.2	26.2	59.3
Total	147.7	74.1	73.6	50.2

Hydro and Wind

UCSD	Physics 12
	Typical Windmills
•	A typical windmill might be 15 m in diameter - 176 m ²
•	At 10 m/s wind, 40% efficiency, this delivers about 40 kW of power - this would be 320 kW at 20 m/s trained windmille one reted at 50 to 600 kW
•	 typical windmins are rated at 50 to 600 kW How much energy per year? 10 m/s → 610 W/m² × 40% → 240 W/m² × 8760 hours per year → 2,000 kWh per year per square meter but wind is intermittent: real range from 100–500 kWh/m² corresponds to 11–57 W/m² average available power density
•	Note the really high tip speeds: bird killers – but nowhere near as threatening as cars and domestic cats!
Spi	ring 2013 23

Hydro and Wind

Electricity Source	Capacity (GW)	Delivered (TWh)	Capacity Factor
Natural Gas	415	1016.6	28%
Coal	318	1734	62%
Nuclear	101	790.2	89%
Hydro	79	325.1	47%
Wind + Solar	62	121.5	22%
Petroleum	51	28.2	6%
Other (biomas, geo)	25	73.4	38%
• N.G. plar • Nuclear p • Use oil fo	nts often used as "pe plants basically just or electricity only w	eaker" plants when de ON hen necessary	emand is high

