UCSD Physics 12

Physics 12: Energy and the Environment

A Physics Perspective on our Society's Needs Tom Murphy UCSD Physics 12

Course Objectives

- 1. Become well informed on the topic of energy and its use in our society, so that you may participate in the national debate and make smart decisions
- 2. Understand the physical concept of energy and learn to identify it in the world around us
 - kinetic energy (energy of motion)
 - gravitational energy
 - chemical energy
 - thermal energy (a form of kinetic energy)
 - light (radiative) energy
 - nuclear energy

Spring 2013

UCSD Physics 12

Course Objectives, continued

- 3. Comprehend Energy Conservation
 - loss-less exchange of energy between forms
 - never created or destroyed—just converted/exchanged
- 4. Learn to calculate energy content/conversion
 - most quantitative part of course
 - forms foundation for all that follows
 - applications to familiar everyday systems
 - math isn't hard, but units can be a pain

Spring 2013

UCSD Physics 12

Course Objectives, continued

- 5. Learn about the energy usage in our lives
 - where we get it, where/how we use it, how we distribute it
 - some discussion of why we need so much energy
- 6. Discuss the future of energy production
 - fossil fuels can't last forever (or even very long)
 - alternative production of energy
- 7. Discuss the side-effects of energy production
 - environmental issues
 - sociological issues

Spring 2013

Lecture 1

UCSD Physics 12

Course Strukture

- Homework 3 times per week (due every lekture)
- 2 quizzes per week
- 5 midterms
- 2 final exams
- oh—and a 20 minute presentation
- highest grade is B-
- In kase you hadn't guessed... April Fools!

Spring 2013

UCSD

5

Physics 12

Resources

- · Your Fellow Students!
 - Encouraged to work together in class and on homework (but not on quizzes or exams!). BUT COPYING PROHIBITED: use own words
- Professor : Tom Murphy
 - Office in SERF building, Room 336, office hours Th 1:30–2:30 PM, or by appointment, 858.534.1844, tmurphy@physics.ucsd.edu
- Teaching Assistant: Matthew Hasling Office hours: Thursday, 2:30–3:50, SERF 434

E-mail: mhasling@physics.ucsd.edu

- Web: physics.ucsd.edu/~tmurphy/phys12/
- TED site (quizzes, discussion board, etc.)
- Physics Tutor Center: M-Th 3-8 PM, 2nd floor Mayer Hall
- Text
 - Energy and the Environment, 2nd edition Ristinen and Kraushaar

Spring 2013

7

UCSD Physics 12

Course Structure

- Class meeting times:
 - Lectures in York 2622 MWF 3:00-3:50
 - PowerPoint presentations
 - Lecture materials will be made available on the web
 - Interactive Transmitter to promote discussion/learning
 - Demonstrations
 - Exams: Midterm Mon. May 6; Final Wed. June 12
 - Discussion section meets in CSB 005, Wed 4:00-4:50 PM
 - · Opportunity for discussions on course material, exam prep, etc.
 - · Math background and exercises
 - · Work out example problems and questions

Spring 2013

6

UCSD			Physics 12		
Grading					
Weight	Format	Due	Comments		
20%	Homework (drop 1)	Fri, in class	no late HW work together, but NO COPYING		
15%	Quizzes (drop 1)	Friday, by midnight	via WebCT		
up to 15%	Class Particip.	every lecture	via transmitter system		
<30%*	Midterm*	May 6 (Mon)	3:00 PM, in class		
<35%*	Final*	June 12 (Wed)	3:00 PM		

^{*} Midterm and Final may count for as little as 15% or 20%, respectively, given extent of classroom participation and worst exam performance. Example: if you have 60% of the participation credit and bomb the final, the midterm still counts 30%, but the final will counts 99% less, or 26% instead of 35%—the other 9% filled in by participation credit.

UCSD Physics 12

What's with this transmitter business?

- A part of your grade (up to 15% participation) comes from the interactive transmitter
 - using iClicker
- Promotes:
 - interaction, attention, investment in class/answer
 - feedback for both student and professor
 - thinking \rightarrow learning
- Timeline:
 - Start using today
 - Credit starts Friday

Spring 2013

9

11

UCSD Physics 12

- The first part of the course is the most quantitative, but the math itself is straightforward
 - just +, -, \times , \div , and a bit of x^y
- Don't let it psych you out when you see it...
- I'd like you to develop a healthier relationship with quantitative analysis
 - numbers can be less rigid than you think
 - cut loose, and allow $\pi = 10/3 = \sqrt{10} = 3$
 - estimates don't have to be exact to be **useful**

Spring 2013 10

UCSD Physics 12

Expectations

- · Attend lectures and discussion section
- Participate!
 - If it doesn't make sense, ask! Everyone learns that way.
 - Don't be bashful about answering questions posed.
 - In-class voting system should make this fun
- Do the work:
 - It's the only way this stuff will really sink in
 - exams become easy
- Explore, think, ask, speculate, admire, enjoy!
 - Bring interesting topical ideas (recent news) to class

Spring 2013

UCSD Physics 12

Any Questions on Course Structure?

Spring 2013

12

13

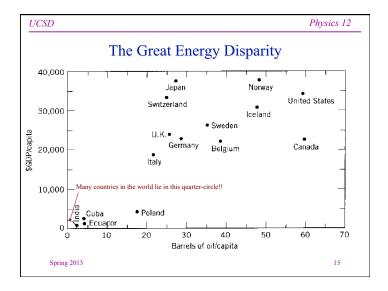
Course Preview: the Big Picture

• We use a heck of a lot of energy

- primitive society uses < 100 W of power per person

- our modern society burns 10,000 W per person

- surely not in our homes! Where is this going on?


• Energy availability has enabled us to focus on higher-level issues as a society

- art

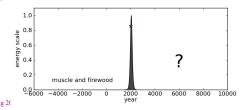
- science

- home shopping network

Spring 2013

UCSD Physics 12

Once upon a time...


- Long ago, almost all of our energy came from food (delivering muscle power), and almost all our energy went into securing food for ourselves
- Enter the work animal, supplementing our muscle power and enabling larger-scale agriculture
- Next burn wood to run boilers, trains
- 150 years ago, muscular effort and firewood provided *most* of our energy—and today this is less than 1% of the story
- Today, more energy *goes into* growing/harvesting food than *comes out of* food!

Spring 2013 14

UCSD Physics 12

We live in a special time and place...

- We use almost 100 times the amount used by the poorest inhabitants of the world
- This phase has only lasted for the last century or so
- Most of our resources come from fossil fuels presently, and this has a short, finite lifetime

16

UC	SD		Physics 12			
Global Energy: Where Does it Come From?						
	Source	1018 Ioules/vr	Percent of Total			

Source	10 ¹⁸ Joules/yr	Percent of Total
Petroleum*	158	40.0
Coal*	92	23.2
Natural Gas*	89	22.5
Hydroelectric*	28.7	7.2
Nuclear Energy	26	6.6
Biomass (burning)*	1.6	0.4
Geothermal	0.5	0.13
Wind*	0.13	0.03
Solar Direct*	0.03	0.008
Sun Abs. by Earth*	2,000,000	then radiated away

* Ultimately derived from our sun Spring 2013 Courtesy David Bodansky (UW)

UCSD Physics 12

Energy is cheap! So what's the problem?

- We spend about \$9/day, or \$3,200/yr per person on energy in the U.S.
 - about 16% of GDP
 - saves us much more than 16% of our time (labor-saving devices, transportation, etc.)
- But we're running through our resources at a phenomenal rate
 - let's see if this lasts even another hundred years!
- Our world will see a profound change in the next century as we adjust to a world without gasoline

Spring 2013 1

UCSD Physics 12

Still fuzzy on the concept of energy?

- Don't worry—we'll cover that in great detail in the coming weeks
- Energy is defined as the *capacity to do work*
- But what is work?
 - we'll get to this in the next lecture
- At some level, I don't know what energy is: why
 there is such a thing, why it's conserved, where it
 all came from, etc.
 - these are deep and interesting questions that some physicists try to understand

Spring 2013 19

UCSD Physics 12

Why am I worried?

- I am spooked by my recent "predictions" that have come true
 - thought housing would go down 50% (and sold early 2006!)
 - claimed in summer 2008 that I wouldn't be surprised if the stock market lost half its "value"
- Now I can't shake my concerns over our energy dependence and where declining resources will take us
 - and I blame it on physics 12!
- Otherwise normally optimist, problem solver
- The good news: we can physically get through this
- The bad news: the good news is only possible if people are educated and seek long-term over short-term gains
 - part of why Physics 12 may be the most important thing I do

Spring 2013 20

21

UCSD Physics 12

My Personal Trajectory

- Ever since teaching Physics 12 in 2004, I have:
 - devoted a great deal of time into understanding the challenges that face us
 - built my own solar photovoltaic off-grid system
 - measured everything energy-related in my house
 - started gardening, replaced grass with CA natives
 - · also rainwater catchment for watering garden
 - · chickens soon!
 - reduced energy profile dramatically, so now < 1/5th the energy footprint of typical San Diegans
 - started a blog, *Do the Math*, with > 2.5 million hits

Spring 2013

UCSD Physics 12

Assignments

- Check out the course web page:
 - physics.ucsd.edu/~tmurphy/phys12/
- Reading:
 - Chapter 1 of Ristinen and Kraushaar
 - also read the Appendix
 - optional: read Galactic Scale Energy post on Do the Math (DtM)
- First homework will be due Friday, April 12
 - see main course website for assignment
- First quiz by Friday (midnight), April 12
- Transmitter use (iClicker) starting Friday, April 5
- · Get established on TED
 - see course website for tips on getting connected

Spring 2013 22