Student ID Number:

Name:

Physics 12: Final Exam

June 12, 2013

Version A

- Be sure to write your name at the top of the front page and the short answer page
- Multiple Choice problems are worth 1.7 points each for a total of 51 points
- True/False problems are worth 1.7 points each for a total of 17 points
- Short Answer Problems total 32 points
- Show your reasoning, write formulas where appropriate (short answer)
- You may use 10 m/s^2 in lieu of 9.8 m/s² in all calculations
- If you miss one part of the short answer, but need the number for the next part, make up a number and proceed

Formula List:

• P.E. = mgh quadrillion: 10^{15} ; Q • $K.E. = \frac{1}{2}mv^2$ trillion/tera: 10^{12} ; T • $\Delta E = \Delta Q = c_p m \Delta T$ billion/giga: 10^9 ; G • $P = \Delta E / \Delta t$ million/mega: 10^6 ; M

- $P/A = \frac{1}{2}\rho v^3 \approx 0.61 v^3$ in W/m²
- $P/A = \sigma T^4$ in W/m²; $\sigma = 5.67 \times 10^8$ W/m²/K⁴; T in Kelvin
- $E = mc^2$; $c = 3.0 \times 10^8$ m/s

Complex Units:

- Newtons: $N = kg \cdot m/s^2$
- Joules: $J = N \cdot m = kg \cdot m^2/s^2$
- Watts: $W = J/s = kg \cdot m^2/s^3$; 1 horsepower = 746 W
- 1 Wh = 1 watt-hour = $(1 \text{ W}) \times (1 \text{ hr}) = (1 \text{ J/s}) \times (3600 \text{ s}) = 3600 \text{ J}$
- 1 kWh = 1000 Wh = (1000 W)×(1 hr) = (100 W)×(10 h) (etc.) = (1000 J/s)×(3600 s) = 3,600,000 J

Numerical and Conversion factors:

- 1 calorie = 4.184 J; 1 Calorie = 4,184 J; 1 Btu = 1055 J; 1 kWh = 3.6 MJ; 1 QBtu $\approx 10^{18}$ J
- density of water is $1 \text{ g/cm}^3 = 1 \text{ g/ml} = 1 \text{ kg/l} = 1000 \text{ kg/m}^3$; heat capacity is $4184 \text{ J/kg/}^\circ\text{C}$
- density of air is 1.3 kg/m³; heat capacity of air is $\sim 1000 \text{ J/kg/}^{\circ}\text{C}$
- useful proton #'s: Th (thorium: 90); Pr (protactinium: 91); U (uranium: 92); Np (neptunium: 93); Pl (plutonium: 94)

Factors of Ten

thousand/kilo: 10^3 ; k