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Analysis of 24 years of lunar laser ranging data is used to test the principle of equivalence, geodetic
precession, the PPN parameters 8 and 7, and G/G. Recent data can be fited with a rms scatter of 3 cm. (a)
Using the Nordtvedt effect to test the principle of equivalence, it is found that the Moon and Earth accelerate
alike in the Sun’s field. The relative accelerations match to within 5% 107", This limit, combined with an
independent determination of 7y from planetary time delay, gives 8. Including the uncertainty due to compo-
sitional differences, the parameter 8 differs from unity by no more than 0.0014; and, if the weak equivalence
principle is satisfied, the difference is no more than 0.0006. (b} Geodetic precession matches its expected 19.2
marc sec/yr rate within 0.7%. This corresponds to a 1% test of . (c) Apart from the Nordtvedt effect, 8 and
v can be tested from their influence on the lunar orbit. It is argued theoretically that the linear combination
0.88+ 1.4y can be tested at the 1% level of accuracy. For solutions using numerically derived partial deriva-
tives, higher sensitivity is found. Both 8 and ¥ match the values of general relativity to within 0.005, and the
linear combination B+ ¥ matches to within 0.003, but caution is advised due to the lack of theoretical under-
standing of these sensitivities. (d) No evidence for a changing gravitational constant is found, with
|G/G|-<_8X10'1zlyr. There is significant sensitivity to G/G through solar perturbations on the lunar orbit.
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INTRODUCTION

In July 1969, the Apollo 11 lunar mission placed an array
of 100 silica corner-cube laser retroreflectors on the Sea of
Tranquiility. Within a few weeks the 2.7 m telescope at the
McDonald Observatory on Mt. Locke, Texas, succeeded in
detecting photons returned from a laser pulse sent to the
reflector. By 1970, the observatory was routinely obtaining
ranges with approximate accuracies of 20-30 cm.

Two more reflector arrays were landed by Apollo mis-
sions in 1971: one at the crater Fra Mauro and one at Hadley
Rille. A French-built reflector aboard the Russian spacecraft
Lunakhod IT was placed near the crater Le Monnier in early
1973.

These events provided an opportunity for testing relativ-
ity, improving the orbit, and measuring effects of interest to
geophysics, astronomy, and lunar science. A lunar laser
ranging review is given in [1].

The Moon orbits the Earth at a mean distance of 385 000
km. Solar perturbations distort the orbit from an idealized
geocentric ellipse at about 1% of that figure. Since the earli-
est development of the classical theory of gravitation, the
lunar orbit has been an important test of that theory. In 1976
lunar ranges of 25 ¢cm accuracy were used to test the strong
equivalence principle [2,3], and a decade later the geodetic
precession was tested [4,5]. Now that laser range observa-
tions to the Moon have accuracies of 3 ¢m, additional, more
stringent tests of relativistic gravitational theory are practi-
cal. This paper presents the results of tests of the principle of
equivalence, geodetic precession, the parametrized post-
Newtonian (PPN) quantities £ and %, and the time rate of
change of the gravitational constant G.
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THE DATA SET

The data set used in this analysis consists of measured
round-trip light travel times, here called ‘‘ranges,”” between
an observatory and retroflector. Ranges from three sites
cover the time from March 1970 to January 1994. Between
1970 and 1984 the only data used are those from the Mc-
Donald Observatory. Then in 1984 two other stations began
acquiring ranges: one on Mt Haleakala on the island of
Maui; the other at the CERGA station in Grasse, France. (In
1985 the 2.7 m McDonald instrument ceased laser ranging
operation and was replaced by the McDonald Laser Ranging
System, a dedicated 60 cm telescope. The Haleakala facility
terminated lunar ranging operations in August 1990.)

The lasers currently used in the ranging operate at 10 He,
with a pulse width of about 200 psec; each pulse contains
~10" photons. Under favorable observing conditions a
single reflected photon is detected once every few seconds.
For data processing, the ranges represented by the returned
photons are statistically combined into normal points, each
normal point comprising up to ~100 photons. There are
8427 normal points used in this investigation.

The measured round-trip travel times At are two way, but
in this paper equivalent ranges in length units are ¢Az/2. The
conversion between time and length (for distance, residuals,
and data accuracy) uses 1 nsec=15 cm. The ranges of the
early 1970s had accuracies of approximately 25 cm. By 1976
the accuracies of the ranges had improved to about 15 cm.
Accuracies improved further in the mid-1980s; by 1987 they
were 4 cm, and the present accuracies are 2-3 cm. One
immediate result of lunar ranging was the great improvement
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in the accuracy of the lunar ephemeris. Within six years, the
fitting of lunar range data reduced the range error from a
prelaser ranging value of approximately 1 km to a few deci-
meters.

THE MATHEMATICAL MODEL

The model for the observatory-reflector round-trip time
delay includes the geocentric orbit, orientation of the Earth
and Moon, tidal displacements of observatory and reflector
sites, plate motion, and atmospheric delay. The 3-cm rms
postfit range residuals of recent years attest to the success of
the models, but it is well to remember that there are always
small omitted effects. Some pertinent effects are discussed in
later sections. The remainder of this section discusses the
relativity modeling.

The simultaneous numerical integration of the Moon and
planets uses the solar-system barycenter. This approach es-
tablishes the coordinate frame used for the computation of
the observable range. Each transmit and receive time at the
ranging observatory is transformed to the coordinate time for
the solar-system barycenter using the vector formulation of
Moyer [6]. Geocentric observatory coordinates and seleno-
centric reflector coordinates are modified with a Lorentz
transformation. The gravity fields of the Sun and Earth delay
the signal. Given a transmit time, the computed reflect and
receive times are derived from a “‘light-time iteration.”’

The formulation of the Jet Propulsion Laboratory (JPL)
planetary ephemeris programs is used to estimate the relativ-
ity parameters. The principal gravitational force on the nine
planets, the Sun, and the Moon is modeled by considering
those bodies to be point masses in the isotropic, parametrized
post-Newtonian (PPN) n-body metric [7]. A thorongh de-
scription of the equations of motion for the planets and
Moon is given in [8]. The portion of the model used in rela-
tivity analysis is the point-mass acceleration for each of the
bodies:
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where r;, I;, and ¥, are the solar-system barycentric position,
velocity, and acceleration veciors of body i; u;=Gm;,

where G is the gravitational constant and m; is the mass of
body j; ri=Ir;—r;; B is the PPN parameter measuring the
nonlinearity in superposition of gravity; ¥ is the PPN param-
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eter measuring space curvature produced by unit rest mass;

The remaining part of the equations of motion accounts
for tides and gravitational harmonics on the Earth and Moon,
and the effects of the major asteroids. The lunar rotation is
integrated simultaneously with the orbits. Partial derivatives
of the orbits and lunar rotation with respect to solution pa-
rameters are generated by numerical integration.

The parameter y also directly affects the measured range.
From a geometrical point of view the Sun, Earth, and Moon
each curve space in their vicinity to varying degrees. The
effect of this curvature is to increase the round-trip travel
time of a laser pulse. The complete relativistic light-time
expression was derived in heliocentric form by Shapiro [9] in
1964 and independently by Holdridge [10] in 1967. It was
formulated in expanded solar-system barycentric form by
Moyer [11] in 1977. The portion of Moyer’s form due to the
Sun and Earth is
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The first term on the right is the geometric travel time due to
coordinate separation; the remaining two terms represent the
curvature effects due to the Sun and Earth. The complete
equation gives the elapsed coordinate time between two pho-
ton events, where an event is indicated by the subscript ¢ or
j. Event 1 is transmission, event 2 is reftection, and event 3
is reception. A latin superscript denotes the origin of a vec-
tor: B is the solar-system barycenter, S is the Sun, and E is
the Earth. In the convention used here, the subscript i repre-
sents the earlier of two photon events, j the later of the two
(j=i+1).

The use of the symbols in the equation is as follows.
r3=|r]| is the magnitude of the vector from the Sun to pho-
ton event § (transmission or reflection) at coordinate time ¢, ;
rj 3 has the correspondmg meamng for photon event j (reflec-
t10n or reception). r *|r —rj| is the magnitude of the dif-
ference between the vector from the Sun to photon event j at
tlmc z; and the vector from the Sun to photon event I at time

,u,s GMg,,; g=GMg,q,: the superscripts B, §, and E
and the parameters ¥ and ¢ have the meanings stated above.

When time delay is converted to distance, the dominant
effect of space curvature is due to the Sun and averages 7.6
m; the contribution from the Harth is about 4 cm. The ig-
nored effect of the Moon amounts to only 0.6-0.7 mm.

ANALYSIS

The next four sections give tests of the principle of
equivalence, geodetic precession, the PPN quantities 3 and
v, and the time rate of change of the gravitational constant
G. These least-squares solutions, which use the lunar laser
ranging (l.LR) data, are separate from one another. The four
sections also contain analytical approximations intended to
explain how the sensitivities to the foregoing parameters
arise. This section discusses analysis procedures common to
the four tests.
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In the solution process there are approximately 140 esti-
mated parameters besides those connected with relativity, in-
cluding the lunar orbit, physical librations (rotation), reflec-
tor coordinates, elastic deformation (Love numbers},
rotational dissipation, moments of inertia, and low-degree
gravity field, as well as the mass of the Earth-Moon system,
the heliocentric orbit of the Earth-Moon system, Earth sta-
tion locations, precession and nutation of the equator, and
Earth rotation (UT1 and polar motion), and two tidal dissi-
pation parameters. (A secular acceleration of the geocentric
lunar longitude arises from the interaction of the Moon with
the terrestrial ocean tides.)

Also estimated are the ephemerides of all the planets, the
length of the astronomical unit, the Earth-Moon mass ratio,
and the masses of selected asteroids [ 12]. Reliable estimation
of the planetary orbits and asteroid masses is achieved by
including more than 64 000 planetary observations. Those
data do indeed provide a strong determination of the afore-
mentioned parameters, but their presence is not directly used
to estimate relativity parameters. This paper is intended as a
lunar test of relativity.

Parameter uncertainties derived from least-squares analy-
ses of large data sets are prone to be too small. While ran-
dom observational errors cause solution parameter uncertain-
ties to improve as the inverse square root of the number of
observations, systematic errors need not be so favorable.
Systematic errors can be observational or from modeling.
They can be too subtie to be apparent when residuals are
examined, and, in the case of modeling omissions, the effect
may mimic solution parameters. To combat the fallure of
formal errors, a “‘realistic’” error is constructed in two steps:
the standard error from the least-squares procedure is multi-
plied by a constant factor, and any suspected additional con-
tributions are added in a root-sum-squared fashion.

The parameter errors from the least-squares solution in-
clude the effect of individual data weights, postfit rms re-
siduals, data distribution, and correlations between solution
parameters. The least-squares solution also includes an error
contribution due to Earth rotation. The simultaneous estima-
tion of the planetary parameters contributes uncertainty to
the other solution parameters through the lunar orbit. The
multiplicative factor comes from experience with (1)
changes in solution parameter values due to different data
spans and different solutions {marginally determined param-
eters can be solved for, constrained, or omitted), and (2)
solution parameters with independently known values, In
this paper, solution parameters given with uncertainties use
these scaled errors unless the text indicates otherwise. The
results for the equivalence principle and change in G include
additional contributions to the realistic error that are de-
scribed in those sections.

THE PRINCIPLE OF EQUIVALENCE

Nordtvedt [13,14] has published an analysis of the effects
of a violation of the principle of equivalence, (A conse-
quence of this principle is thaf the gravitational mass M ; of
any object is identical to its inertial mass M.} The Earth and
Moon are accelerated by the gravitational field of the Sun.
Failure of the principle of equivalence would cause a differ-
ential acceleration between the two bodies, giving a dipole
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term in the expansion of the Sun’s gravitational field at the
Earth. Nordtvedt points out that a failure of the principle
would lead to an anomalous radial perturbation with the
29.53-day synodic period between the Moon and Sun. [The
synodic period is the reciprocal of the difference between the
inverse sidereal periods: 29.53=(1/27.32— 1/365.24)"1.] The
argument (designated D) with the synodic period is the mean
longitude of the Moon minus the mean longitude of the Sun
and is zero at new moon. Any anomalous radial perturbation
will be proportional to cos D.

A breakdown of the principle of equivalence gives an
acceleration of the Moon with respect to the Earth of
GM'Er'/r"®, where G is the gravitational constant, M’ is
the mass of the Sun, r’ is the vector from the Sun to the
Earth-Moon center of mass, 7’ is the magnitude of r', and
E=(Mg/'M ) pam— (M a/M Duoon 18 the difference between
the Earth and Moon gravitational-to-inertial mass ratios.

The lunar mean anomaly is /; its rate is the natural fre-
quency for radial perturbations. Nordtvedt’s first-order ex-
pression for a near-circular orbit can be written

LU+

Ar=-a EWCOSD. (3)

In the conventional notation of lunar theory, L is the mean
longitude of the Moon, L’ is the mean longitude of the Sun
{180° from the heliocentric mean longitude of the Earth-
Moon barycenter), a’ is the heliocentric semimajor axis of
the Earth-Moon barycenter orbit, and D=L —L'. (Overdots
indicate rates; primes denote quantities referring to the Sun.)

As a check of Nordtvedt’s original result, a somewhat
different derivation based on perturbations of orbital ele-
ments was performed. It gives

IL'3(2i+ D)
=- ————— cosD. {4}
LD{(I’- D%
When evaluated in meters, the two coefficients are

—2.08x10'°E and —2.05X10'°E, respectively. The differ-
ence between the two is only 1.4%. It will be noted that the
denominator contains the combination !— D, which is the
difference between the solar mean motion and the lunar peri-
gee precession L’ — . A breakdown of the equivalence prin-
ciple would also give rise to a perturbation in longitude pro-
portional to sin D. For ¢ AL, where a is the semimajor axis
of the lunar orbit, the companion to Eq. (4) has a coefficient
—2.1 times larger.

Recently Nordtvedt [15] has demonstrated that the earlier-
derived coefficients of cos D need to be increased by about
40% over the values given above; this increase is supported
by Damour and Vokrouhlicky [16]. This amplification arises
because of the strong solar influence on the lunar orbit. The
synodic period of the perturbation interacts with the 2D tidal
expansion of the solar field at the Earth, With this correction
the radial perturbation in meters is

Ar=—287x10'%E cosD. (5

The longitude pertufbation also needs to be increased by
about 40%.
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The above equations apply to any violation of the prin-
ciple of equivalence. A breakdown of the strong equivalence
principle, where gravitational self-energy Ug can influence
the gravitational interaction, is possible for bodies the size of
the Earth and Moon. Nordtvedt gives

Mg Ug

T ©)
The quantity 7 depends on the PPN parameters @ and y
according to

n=4p-vy-3 (™)

and is zero for general relativity. Numerically, the difference
between the Earth and Moon is

E={—464X10"104+0.19x 10719 7= —4.45x 10" m”’( )
8

Expressed in terms of 7, the radial perturbation in meters is
Ar=12.87cosD. The coefficients in [16] are 2% larger than
in [15], so the coefficient of the last expression is 13.1#, and
the coefficient in Eq. (5) is —2.94x10"°E.

The numerical values in Eq. (8) are the same as used in
[2], where the Earth’s self-cnergy is based on the result [17]
for a structured interior, and the Moon’s self-energy is based
on a homogeneous interior. Qur own computation for the
self-energies for radially structured interiors for both bodies
recovered the earlier values to the number of digits given in
Eg. (8). Adelberger et al. [18] have suggested a 10% larger
value for the Earth, but a recent computation is in agreement
with Eq. (8) [19].

Apart from the Nordtvedt effect, there are other causes of
cos D signatures in the lunar distance. From the classical
expansion of the lunar orbit [20] there is a (109 km)XcosD
term in the radial coordinate. The amplitude depends on
mass ratios, mean motions, and the mean distance to the
Moon, but these are well enough known that only 2 mm
error occurs for this coefficient (the least-squares solution for
the equivalence principle includes this error). There is also a
relativistic contribution apart from the Nordtvedt effect
which has been computed in [15,21-26]. This relativistic
contribution is given as —{(6 cm)XcosD in [23]. The numeri-
cal integration of the relativistic equations of motion include
classical and relativistic orbit signatures in our lunar ephem-
eris. Williams et al. [2] mention that the interaction between
the Earth’s gravitational second harmonic J, and the Sun
gives rise to a —(5 cm)XcosD effect (—7 cm with the 40%
increase). This force is included in our equations of motion.

The former effects are modeled in our programs, but solar
radiation pressure gives rise to a small unmodeled signature
[15,27]. This effect is estimated to be —(0.35 cm)XcosD.
The numerical integration software contains a model for the
solar gravity field but not for solar radiation pressure. In the
range computation the differences between the transmit, re-
flect, and receive times are computed by iteration, and the
time delay of Eq. (2) is modeled, implying that there should
be no anomalous signatures due to these sources [28].

The equivalence principle is tested by fitting LLR data
with a least-squares solution. The partial derivative for
M /M, is generated by numerical integration (prior to the
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results in [5] we used the cosD formulation). The result is
E=(4.3+4.6)x10""*. This is equivalent to —1.2+1.3 ¢cm in
the coefficient of cosD or, for a violation of the strong
equivalence principle, to 7=-—0.0010£0.0010. The argu-
ment D is unevenly sampled. Ranges are never acquired near
new Moon because of the bright Sun, The former 2.7 m
McDonald Observatory ranging system could acquire ranges
near full Moon, but the newer, more accurate, lower-energy-
per-pulse systems have acquired full-Moon ranges only dur-
ing an eclipse. Wishing to be cautious about uncertainties,
we have used the procedure of [1]. In a root-sum-squared
sense, 1 cm has been included in the above uncertainty in the
coefficient of cosD, 3.5X10 " in E, and 0.0008 in 7. If the
unmodeled 0.3 cm effect from solar radiation pressure is
applied as a correction, then E=(3.2+4.6)X 1075, the cosD
coefficient is —0.9=1.3 cm, and »=-—0.0007=0.0010. In
the solution for E, the largest correlations of 0.4 occur with
GM gyt 4 Moon » IUNAr semimajor axis a, and eccentricity e.
These occur because a cos2D term is important for the GM
determination and will not be independent of the cosD term
because of nonuniform sampling, and because of the facts
that the semimajor axis is connected to GM through Ke-
pler’s third law and that the product ae is better determined
than e.

The LLR results for E and the cosD coefficient apply to
the equivalence principle, weak or strong: Ejjp=Fgpe
+Eypp. Earlier results for the Nordtvedt effect have been
interpreted in terms of the strong equivalence principle, the
laboratory results for the weak equivalence principle being
able to tule out effects due to composition. Limits as low as
those given above require consideration of the weak equiva-
lence principle [24]. Adelberger er al. [18,29] have com-
bined their Eétvos results with the Princeton [30] and Mos-
cow [31] E6tvos experiments. For acceleration in the solar
field they place limits on the fractional acceleration due to
composition. Su er al. [32] have used test bodies which
simulate the compositicnal differences of the Earth and
Moon. Their compositional contribution Ewgp 18
(—1.6+2.2)x1072, When combined with the LLR value,
Egpp=(1.9%2.3)X1071%, Note that the Nordtvedt iest is a
null result. It would be necessary to have compensating vio-
lations of the strong and weak equivalence principles to si-
multaneously satisfy the small LLR observational uncertain-
ties in E while using a larger uncertainty from the weak
equivalence principle.

We wish to derive 8 from # and vy using S={(7+ y+3)/4.
The uncertainty for vy is taken to be 0.002 from the interplan-
etary time delay [33]. The compositional constraints from the
preceding discussion contribute to 7 and B. Using Egpp from
the combined compositional [32] and LLR results gives #=
—0.0043+0.0051. With the combined strong and weak
equivalence principles, $=0.9989x0.0014. Under the as-
sumption that the weak equivalence principle is satisfied,
B=0.99980.0006.

Previously reported results for the Nordtvedt effect are
given in [1-3,5,34—37]. The uncertainty in determinations of
the Nordtvedt effect has decreased by a factor of 30 during
18 years. The results given in [ 1] and [37] have uncertainties
comparable to those in this paper.
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GEODETIC PRECESSION

The geodetic precession is also called both the geodesic
precession and the de Sitter—Fokker precession. It contrib-
utes a 19.2 marc sec/yr precession rate for a gyroscope mov-
ing with the Earth. For an elliptical orbit about the Earth, the
same contribution is made to the precession of the node and
of the longitude of perigee along the ecliptic. The geodetic
precession rate is prograde and is computed from [38] and
[39] to be ’

(n'a’fc)’n’
Pe=(124y) ——7— ©)

where ¢ is the speed of light and, for the orbit of the Earth-
Moon system about the Sun, n’ is the mean motion, a' the
semimajor axis, and e’ the eccentricity.

We review and extend the discussion of [40], which pro-
poses testing for the geodetic precession using LLR data.
The distance from the center of the Earth to the center of the
Moon can be represented by the series [20] with largest
terms (in kilometers)

=385 001 —20 905 cosl — 3699 cos(2D — 1)
—2956 cos2D+ -+ . (10)

The first term is the mean distance, the second results from
the eccentricity of the orbit, and the third and fourth are from
solar perturbations. The lunar mean anomaly is / (27.56-day
period), and D is the mean elongation of the Moon from the
Sun (29.53-day period).

For purposes of explanation, we can imagine that the
least-squares solutions are equivalent to determining ampli-
tudes, phases, and phase rates of individual terms in Eq. (10).
More exactly, there are a limited number of free parameters
in a solution, so that the amplitudes, phases, and phase rates
are not all independent. The amplitude of a well sampied
frequency can be reliably measured to 1 cm. From the sec-
ond term one expects to determine the mean anomaly to 0.1
marc sec and the anomalistic mean motion [ with corre-
spondingly high accuracy. Limitations, which increase the
uncertainty, include the need to also determine quadratic (z%)
and long-period {18.6-yr period of the node) tidal contribu-
tions to the mean anomaly [41], terms at nearby frequencies
which require 6.0-year (period of the argument of perigee)
and 8.9-year (period of the longitude of perigee)} data spans
to separate fully, and a span of the most accurate data, which
is 7 yr long. From the two solar perturbation terms and the
mean anomaly, one gets D with sub—marc sec accuracy and
its rate with corresponding accuracy. It is presumed that the
planetary data give L', Since D=L—L’=@+]—L’, the rate
of the longitude of perigee, &, is determined. The geodetic
precession can be thought of as being detected through its
influence on the lunar longitude-of-perigee precession rate.
In addition to the errors in ! and L', we must ask what errors
are present in the longitude-of-perigee rate.

The lunar perigee precession rate is dominated by solar
perturbations. While the classical contributions to the perigee
precession rate from lunar and solar orbital parameters are
mostly very well known, two influences merit discussion. An
error in the inclination of the lunar orbit plane to the ecliptic
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plane of 1 marc sec would introduce a (.18 marc sec/yr un-
certainty in the perigee precession rate. The orientation of the
planes of the tunar orbit, ecliptic, and the Earth’s equator are
determined by the LLR data; it takes 18.6 yr to get a full
separation of these parameters. Thus the uncertainty in the
lunar inclination has been decreasing strongly with time, and
a good test of the geodetic precession is a benefit of the long
data arc. The error in the first LLR tests of geodetic preces-
sion [4,5] was dominated by the inclination uncertainty. Be-
cause the highest-quality data extend over only the past
seven years, the uncertainty of the inclination should con-
tinue to improve in the future. When geodetic precession is
fixed at the value of general relativity, the inclination uncer-
tainty is 0.5 marc sec, contributing 0.09 marc sec/yr to pre-
cession unceriainty; when geodetic precession is estimated,
the inclination uncertainty is 0.7 marc sec, contributing 0.12
marc sec/yr. This source of error should continue to decrease
with increasing data span.

The second significant source of perigee precession error
comes from the lunar second-degree gravitational harmonics
Jo and C,,. Since the ratio is accurately known from the
LLR analyses, we will refer to the error in J, only. Until
recently we have used a 0.6% uncertainty for the lunar J,,
corresponding to a precession error of 0.11 marc sec/yr
{0.6% of the geodetic precession). This J, uncertainty came
from [35], which combined the analysis of Lunar Orbiter
Doppler data and LLR data in a single solution. It was the
Lunar Orbiter data which determined the J, in that combina-
tion. There have been three recent developments: LLR now
determines the second-degree lunar harmonics [1] as accu-
rately as the earlier Lunar Orbiter analysis, the Lunar Orbiter
data have been extensively reanalyzed [42] with an improve-
ment in accuracy, and newer Clementine mission data have
been analyzed [43], The three recent results are concordant
[44]. As we now include the lunar J, as a solution parameter,
the J, uncertainty, like the inclination error, is accounted for
during the least-squares solutions.

The equations of motion for the numerical integration of
the lunar and planetary ephemerides in Eq. (1) are those of
general relativity. They contain the inherent geodetic preces-
sion effects.

Geodetic precession is implicit in the relativistic equa-
tions of motion [Eq. {1)]. An explicit development is needed
for the partial derivative. We isolated the terms which give
rise to the geodetic precession by selecting torquelike terms
that cause the node to precess. The leading terms in {(Moon
distance)/(Sun distance)=1/400 were retained. A scale factor
Kp tepresents a possible departure from the prediction of
general relativity:

Fy—tg=Kgp Cz_#r% {—ltg (Ey—1g)]rp
+(1+y)[rg-(ry—rg) 5} (1)

where the quantities 1, 1, and ry denote the solar-system
barycentric positions of the Earth, Moon, and Earth-Moon
barvcenter, respectively, and time is referenced to the solar-
system barycenter. In the solutions a null value of Kgp cor-
responds to general relativity.
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By using perturbation theory with an elliptical orbit, it
was verified for a unit of increment of Kgp that Eq. (11)
gives the precession rate of Eq. (9) for the node and longi-
tude of perigee. Nordtvedt [45] has pointed out that Eq. (11)
can be split into symmetric and antisymmetric parts. The
antisymmetric part influences the precession of a gyroscope
or an elliptical orbit, but there is a contribution to the pre-
cession of the perturbed lunar orbit from the symmetric part.
The latter contributions to the precessions of the node and of
the longitude of perigee need not be equal, and they do not
depend on y. The LLR test is similar, though not identical, to
the test on a precessing gyroscope.

Using LLR data, the solution for the geodetic precession
correction is

Kgp=—0.003x0.007. (12)

The largest correlation of +0.56 is with the lunar J,; this
parameter is now at least as important an error source as the
orbit inclination. Equation (9) does not give the precession
identical to that of Eq. (11) with unit increment for Kgp, but
we note that the total relativistic precession from Eq. (1} is
within 10% of Eq. (%) [15,21-23]. Consequently, we ap-
proximate o(y)=30(Kp) and conclude that the above result
for Kgp corresponds to a 1% test of v, implying a precession
rate error of .13 marc sec/yr.

Bertotti et al. [40] did not fit data but argued that geodetic
precession was being satisfied (a) from the small size of the
LLR residuals, and (b) from the agreement between LLR and
VLBI Earth rotation rates. Direct fits to the LLR data [4,5]
confirmed geodetic precession to 2%. More 1ecently, Dickey
et al. [1] give a 0.9% test. The result above reduces the un-
certainty to 0.7%. All results are consistent with v=1 and
general relativity.

THE PPN PARAMETERS

The PPN parameters of interest are 3, measuring the non-
linearity in the superposition of gravity, and v, measuring the
amount of space curvature produced by unit rest mass. In
general relativity both parameters are unity. Estimates of y
and 3 have been obtained by other investigators. Shapiro
et al. [46], Cain ef al. [47], and Hellings [48] used the Vi-
king orbiter and lander data to determine y. Reasenberg er al.
[33] estimate the uncertainty in  to be 0.002, using Viking
lander data. The test of the geodetic precession in the pre-
ceding section can be taken as a 1% test of v, but this state-
ment ignores additional sensitivity to PPN parameters, dis-
cussed below.

The lack of detection of Nordtvedt’s term has been used
earlier to imply a small uncertainty (0.0014) on B. Tests of 8
using the planetary range data [36] yield a 8 uncertainty of
0.003. There is value in attempting to test 8 and ¥ in an
alternative manner.

Distinct from the Nordtvedt term, the relativistic point-
mass interactions of Eq. (1) give sensitivity of the lunar orbit
to B and . Partial derivatives for 8 and y have been gener-
ated from Eq. (1) by numerical integration. The orbit pertur-
bations include the geodetic precession. Thus one expects
solutions for y to have uncertainties comparable to, or better
than, the above 1% test resulting from the geodetic preces-
sion.

LLR solutions for B8 and vy using the sensitivity from the
relativistic point-mass interactions and the gravitational time
delay Eq. (2), but not the Nordtvedt term, show a smaller
uncertainty for y than would be predicted from the geodetic
precession alone, and nearly identical accuracies for both 38
and y. When S and ¥ are estimated simultanecusly, we find
that both uncertainties are 0.005, there are no significant de-
viations from 1, and the —0.86 correlation between 8 and y
means that the linear combination 8+ vy is better determined,
with an uncertainty of 0.003. The challenge is to understand
the source of this sensitivity and whether it is valid.

The discussion of the geodetic precession presented the
view that the sensitivity to that precession comes from the
solar perturbations in combination with the elliptical radial
variations. In that discussion, the determination of the rate of
the angle D=L—L'=&+[—L" was presented as giving
sensitivity to the geodetic precession, and hence 7, through
the lunar perigee rate. When the relativistic point-mass inter-
actions are considered, the rate of D also gives sensitivity to
B and v as they influence L', In the near circular approxima-
tion, the angular rate of the Earth-Moon system about the
Sun is given by an expression resembling Kepler’s third law
(e.g., see [15,21,49]):

L' =[(GM")YYHA"™ [1-5(8+ y/2)]. (13)

A' is the unperturbed semimajor axis a’ plus the change in
the mean distance from the Sun when relativistic perturba-
tions are included, G is the gravitational constant, and M is
the solar mass (GM'=n"2a’?). The scale for relativistic ef-
fects is set by

S=GM'la’c*=(n'a'lc)*=098706x 1078 (14)

with Sa’'=1.4766 km and Sr'=12.792 marc sec/yr. The
relativistic contribution to the angular rate is —Sn'(8+¥/2).
The relativistic contribution to @—L' is then Sn'{0.5
+3+1.5+) when the geodetic precession is included, but is
closer to Srn’(0.65+0.88+1.4y) when a more exact expres-
sion for the perigee rale is included [15,21,22]. From the
experience with the geodetic precession, the linear combina-
tion of B and -y should be determinable to 1%. This argument
assumes that the lunar mean anomaly rate is well determined
by the LLR data and that the mean distance from the Sun and
GM' (equivalent to the length of the astronomical unit) are
well determined by the planetary range data.

The solutions include both the LLR and planetary ranging
data. A normal set of solution parameters is vsed for the
initial conditions of the Moon and planets, but the relativity
solution parameters were ‘‘turned on’ only for the LLR
data. Both data sets are sensitive to the heliocentric Earth-
Moon orbit. In an attempt to isolate the relativistic sensitivi-
ties of the LLR data from those of the planetary data, a
double standard is being applied to the heliocentric orbit.
The planetary data are included so that appropriate uncertain-
ties in the heliocentric orbit will be propagated into the lunar
orbit during the solutions. The double standard is not perfect,
but we do not see another way to isolate the contributions of
the: lunar data from the planetary data. We have done a va-
riety of solutions (see below), including those with planetary
relativity parameters turned on, and they do support strong
sensitivity of the LLR data to relativity.



Vo et

6736 J. G. WILLIAMS, X. X. NEWHALL, AND J. O. DICKEY 33

The solution cannot be finding all of its 8 and -y sensitiv-
ity through the argument D, or the two parameters would not
separate. Other terms with smaller amplitudes give less sen-
sitivity to other arguments; for example, sensitivity to the
mean anomaly {" of the orbit about the Sun is an order of
magnitude less than the mean longitude sensitivity. Sensitiv-
ity through the amplitudes is a possibility. Brumberg and
Ivanova {21,22] and Nordtvedt [15] have investigated the
sensitivities of the amplitudes to 8 and y. When one consid-
ers observable amplitudes, the § and vy sensitivities are
mostly at the few-centimeter level. Brumberg and Ivanova
show two notable possibilities. The annual cos!’ term shows
a (—16+268—67y)-cm relativistic contribution to its ampli-
tude, and the cosD term has {33—483+10v} cm in its am-
plitude. Nordtvedt does not compute the former term; for the
latter term he gets a similar-sized sensitivity. For general
relativity (#=vy=1), the Brumberg and Ivanova solution can
also be compared to the solution by Lestrade and Chapront-
Touzé [23]. The agreement is good except for a few terms
involving the annual argument /’; this difference seems to be
traceable to the 1.66-msec annual term in the time transfor-
mation between the solar-system barycenter and the Earth-
Moon barycenter. A 1-cm sensitivity to both amplitudes
would give a 1.8% uncertainty for 8—0.2+. In combination
with a 1% determination of 0.83+1.4vy from the argument
rate for I, the B uncertainty would be 1.6%, and the v un-
certainty 1.1%. These uncertainties are three and two times,
respectively, the uncertainties from the least-squares solution
using the LLR data.

In an attempt to better understand the small uncertainties
from the least-squares solutions for 8 and 7, several addi-
tional least-squares sclutions were done with the following
results. (1) If vy is the only relativity parameter in the solu-
tion, the resulting uncertainty is 25% of that predicted from
the Kgp uncertainty using Eq. (9). (2) If v and Kp are si-
multaneously solved for, the correlation is —0.34, and both
uncertainties are only 1.06 times larger than those from the
two individual solutions. (3) The influence of L' [Eq. (13)]
in the D argument rate was weakened by allowing the plan-
etary data to solve for a 8 and ¥y pair that differed from the S
and vy pair from the lunar data. Compared to a solution for
the latter two parameters, the uncertainty in the mean motion
about the Sun increased by a factor of 1.55 while the lunar-
determined uncertainties for 8 and vy increased by factors of
1.01 and 1.14, respectively. All least-squares solutions sup-
port smaller uncertainties for B and -y than is accounted for
by our simplified analytical approximations. The complexity
of the perturbed lunar orbit has resisted simplification.

Concerning the sensitivity of the LLR data to 8 and vy
through point-mass interactions, theory indicates it should be
possible to determine the combination (0.88+1.4%} io 1%
uncertainty through an argument rate. There is additional
sensitivity to £ and 7y through amplitndes. Solutions with
LLR data give B and 7 uncertainties of 0.5%, several times
better than our theoretical understanding supports. It is
clearly worthwhile to combine the relativistic solutions from
both the LLR and planetary ranging data. Since the LLR data
have their sensitivity through the lunar and heliocentric orbit,
while the planetary data have their main sensitivity to vy
through the time delay in the solar gravity field and their
main sensitivity to S through the precession of Mercury’s

perihelion, the combination of data types offers an interest-
ing possibility. A combined solution would improve the ac-
curacy of separating 8 and the solar J,. which do not sepa-
rate well when using the existing planetary data alone.

CHANGE IN THE GRAVITATIONAL CONSTANT

Analyses of the LLLR data have the potential to determine
the rate of change of the gravitational constant G. A decreas-
ing G would cause both the lunar mean distance and period
to increase (from Kepler's third law, the change in mean
motion n and semimajor axis a are connected: 2r/rn+3ala
=G/G). Tidal dissipation also causes the mean distance and
orbital period to increase (for tidal changes, 27/n+3a/a
=0}, but not in the same ratio as for G. Since the tidal effect
is relatively large (A/n=-15%10"04r, d/a=10
X107 "%yr), and since we are interested in G/G less than
107 "Yyr, accurate tidal modeling is a necessity.

Tides on the Earth dissipate energy and transfer angular
momentum from the Earth’s spin to the lunar orbit. Our
present tidal model includes diseipation by diurnal and se-
midiurnal tides on the Earth ¢ well as dissipation in the
Moon. From a recent scluiion without G [1] these contribute
to the total tidal # or g in the proportions 16%, 86%, and
—1.5%, respectively. The uncertainty in that total is 2%. The
diurnal and semidiurnal terms are separable by a small
18.6-yr term in mean anomaly [41] The dissipation in the
Moon is mainly observed through its influence on the lunar
rotation and not on the orbit. The influence on the orbit is
inferred from the lunar dissipation model. There are two pos-
sible sources of dissipation in the Moon: solid-body tidal
dissipation, and viscous or turbulent dissipation at a liquid-
core—solid-mantle interface [50]. The former source is pro-
grammed in our software; the latter is not. The two sources
do not give rise to the same orbital effects, so the lunar
coutribution may be in error by most of its present 1.5%
effect (the larger of the two possibilities) corresponding to
1X10%/yr in G/G. It is expected that changes in the lunar
model would leave the total tidal # and 4 the same, so the
present tidal model should be capable of supporting tests for
G/G with the accuracies of this paper. Programming the al-
ternative lunar dissipation model would broaden the tidal
acceleration computation, might improve the fit, and should
benefit future tests.

A G/G rate of —107'/yr causes a 3.9 mm/yr increase in
the lunar mean distance (a/a= —G/G, nin=2G/G). More
important than the linear increase in distance, both G and
tidal acceleration contribute a —¢° sin/ signature in range
that comes from the —7* change in mean anomaly. However,
even if the 1% term in mean anomaly were indistinguishable
for G and tidal acceleration, the change in mean distance
would still be distinct for the two effects. Above, relations
between 7 and ¢ were given for tidal dissipation and G. If G
were hidden as a false tidal acceleration with identical #, the
difference (d— dgge gau)/a=G/3G, so that —1/3 of the ra-
dial change, or —1.3 mm/yr, would be distinct from tidal
acceleration. A change in G also causes accelerations in the
angular motion about the Sun (#'/n’ =2G/(G), and the solar
perturbation terms in Eq. (10) contribute additional sensitiv-
ity (the part distinct from tides in I}, the acceleration of the
mean longitude of the Moon minus that of the Sun, is
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TABLE 1. Four solutions for relativity parameters.
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FIG. 1. Effect of G/G=—1x10""Yyr on the radial coordinate
of the Moon. The curves are annual samples of the observed
weighted mins range residual and four curves based on the theoreti-
cal signature: the maximum, rms, average, and minimum. (The or-
der is the same for the earliest and latest times.) The reference time
in Eq. (16) is 1989,

—2n'G/G). The contribution from the acceleration in the
heliocentric orbit through the solar perturbation terms gives
coefficients of periodic terms which are quadratic in time.
With the linear and solar perturbation terms, the G contribu-
tion to radial distance that is distinct from tidal acceleration
is

LG 2’G3699'2D
37! na[ sin

+2956 sin(2D—1)+---1¢* km. (15)

Some small terms from the sensitivity of the coefficients of
the periodic terms to mean-motion changes have been ig-
nored.

For a G/G rate of —ulO'“/yr, the major radial terms are

—1.28¢+[0.46 sin(2D—I)+0.37 sin2D]t* mm, (16)

with ¢ in years. For data spans of more than a decade, the
nonlinear terms surpass the linear term in importance. The
envelope, rms, and average signature due to Eq. {16) are
shown in Fig. 1, along with the annual weighted postfit rms
LLR residuals. A rate of 10 '/yr would yield signatures
from the solar perturbations exceeding 10 cm rms (>20 cm
extremum) in the early 1970s and reaching 1.0 ¢cm rms (2.6
cm extremum) in 1993; the lack of such signatures demon-
strates the importance of the early data in conjunction with
the later, more accurate data in limiting G. An increaging
data span has the potential to strikingly improve the G/G
determination. .
The LLR data have been used to estimate G/G
=(1+3)x 10" "yr. Tidal and other standard Newtonian pa-
rameters were included in the solution. The largest correla-
tion is +0.67 and is with the semidiurnal tidal component. A
more cautious uncertainty will be used. Earlier in this paper
a l-cm sinusoidal signature, 0.7 cm rms, is used for a se-
curely detectable signature. The value 0.7 cm rms in 1993

Solution Parameter Value

1. Equivalence principle E (3.2+4.6)x10713
2. Geodetic precession Kgp —0.003+0.007
3. PPN superposition B 1.003x0.005

and curvature ¥ 1.000=0.005

4. Change in G GIG (1£8)x10 A

justifies a G/G uncertainty of 7% 107 */yr. Combining with
the least-squares result, which adds some tidal uncertainty,
the LLR G/G result is (1+8)X10™/yr.

As a check of the linear effect in Eq. (15), a separate
solution has estimated a rate in the mean distance along with
tidal and other standard solution parameters, but not G. The
mean distance rate uncertainty is 3.5 mm/yr, equivalent to
27X IO'fllyr for G/G. The previous solution implies a
smaller G/G uncertainty, illustrating the dominance of the
nonlinear solar perturbation terms.

The present LLR results for G/G do not improve signifi-
cantly on the planetary ranging results [36,51-53]. Recent
results have also been given for planetary data combined
with LLR data [54] and the binary pulsar [55-58].

CONCLUSIONS

Solutions using 24 years of lunar laser data have been
used for three tests of relatively and a check of the invariance
of the gravitational constant. The results of the four tests are
summarized in Table L The LLR data have improved with
time. The data since 1987 are particularly accurate, with
1987 ranges showing a weighted rms residual of 4 cm and
1993 residuals scattering by 3 cm.

The Nordtvedt effect gives strong sensitivity to any vio-
lation of the equivalence principle. By using a numerically
derived partial derivative for the gravitational-to-inertial
mass ratio, we find that |[(M /M ) ean—(M /M Drsoonl
=<5%10 . Since any violation of the strong equivalence
principle depends on 8 and 7, and since there are good de-
terminations of ¥ from interplanetary time-delay measure-
ments, then including the uncertainty due to compaositional
differences between the Earth and Moon gives |B
—1|=0.0014. If it is assumed that the weak equivalence prin-
ciple is satisfied, then |8—1|=0.0006.

The geodetic precession is within 0.7% of its expected
value of 19.2 marc sec/yr. Since this precession depends on
¥, this result is.also a 1% test of y under the assumption that
other relativistic effects are known. The lunar J, and the
orbit inclination are the most important sources of uncer-
tainty.

Independent of the Nordtvedt effect, but including the
geodetic precession, there are orbit perturbations depending
on B and 7. The time delay gives some sensitivity to . The
LLR solutions use numerically derived partial derivatives for
the orbit perturbations and indicate sensitivity to 8 and y
beyond that expected from theoretical work. It is certain that
the linear combination 0.88+ 1.4y is tested at the 1% level
since it arises through the same solar perturbation terms
which give the geodetic precession test. The work of Brum-
berg and Ivanova indicates additional sensitivity to 8 and ¥
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through annual and synodic monthly terms, and Nordtvedt’s
work supports sensitivity in the latter term. Neither work
would support 8 and -y uncertainty better than 1%. From the
LLR solutions 8 and y match the values of general relativity
within the uncertainty of 0.005, and the linear combination
[+ y matches within 0.003. For the LLR solutions it must be
cautioned that use is made of the planetary ranging data to
determine the distance of the Earth-Moon orbit from the Sun,
without allowing those data to directly contribute to the de-
termination of the PPN parameters. It is important to under-
stand this test better, since the sensitivity to 48—y from the
Nordtvedt effect in combination with the sensitivity to S+ vy
gives a test of y with uncertainty (.003, which is second in
accuracy only to the interplanetary time delay, and it can be
expected to improve in the future.

On the question of a changing gravitational constant, so-
lutions show no significant change, with |G/G|=8
X107 %fyr. It previously has been understood that G and
tidal acceleration both influence the lunar period and mean
distance, but G and tidal acceleration would be separable
from a linear term in time for distance. Here it is shown that
the influence of G also causes nonlinear time signatures,
through the solar perturbations, which are already dominant
with the present data span.

The lunar orbit is highly perturbed by the Sun. This pa-
per’s tests of relativity and G all depend on the solar pertur-
bations. Reasoning from two-body theory is insufficient for
the lunar orbit. All of the tests will improve with additional
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data of present quality. The geodetic precession test, depend-
ing on a secular effect, will benefit from increased data span.
The tests of 8 and y through orbit perturbations (apart from
the Nordtvedt effect) are the least well understood, but hold
promise. In combination, the lunar and planetary ranging
data should be able to improve on the dynamical determina-
tion of the solar J,. Finally, there are lunar G terms, nonlin-
ear in time, which should permit significant future improve-
ments in testing the invariance of G.
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