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Recent experiments in hippocampal neurons have demonstrated the existence of compartments
with elevated levels of second messenger molecules such as cAMP. This compartmentalization is
believed to be necessary to ensure downstream signaling specificity. Here we use analytical and
numerical techniques to investigate the diffusion of a second messenger in the soma and in the
dendrite of a neuron. We obtain analytical solutions for the diffusion field and examine the limit
in which the width of the dendrite is much smaller than the radius of the soma. We find that the
concentration profile depends both the degradation rate and the width of the dendrite and that
compartmentalization can be indeed be achieved for small width to soma radius ratio.

PACS numbers: 87.10.Ae, 87.16.Ac, 87.16.Xa

I. INTRODUCTION

A large variety of cellular processes are regulated by
the diffusible second messenger cyclic AMP (cAMP).
This messenger is generated by membrane bound adeny-
lyl cyclases (ACs) which, in turn, are activated by ex-
ternal signals. cAMP is degraded by phosphodiesterases
(PDEs), which can be localized to specific cell locations
or can be diffusible. The fact that cAMP is able to acti-
vate multiple pathways raises the question of signal speci-
ficity: how can one avoid the activation of undesirable
pathways following the input to a specific pathway? One
way to achieve signaling specificity is to have cAMP lev-
els that are elevated in small spatial compartments but
remain low in the rest of the cell. Indeed, an increas-
ing number of experiments had shown that there exist
cAMP microdomains in several different cell types, in-
cluding cardiac myocytes [1, 2], kidney cells [3] and neu-
rons [4].

This compartmentalization is surprising since cAMP
is a small, hydrophilic molecular, which diffuses very
fast with a diffusion constant of D = 100 ∼ 700µm2/s.
Thus, with no restriction on diffusion, AC activation
will quickly lead to an increase in the global cAMP
level. To prevent the indiscriminate activation of mul-
tiple pathways, there needs to be a mechanism that re-
stricts the diffusion away from the microdomain. Pos-
sible mechanisms to create compartments with elevated
levels of cAMP include physical barriers, including cell
membranes and intercellular structures, and non-uniform
degradation. An example of the latter mechanism was
suggested for myocytes where physical barriers appear
not to play a significant role. In this mechanism, cross-
talk is avoided by co-localizing the final targets of the
signaling pathway with the ACs, and by spatially sepa-
rating the source of cAMP from regions with an elevated
PDE concentration. In our previous work we constructed
a mathematical model to investigate the viability of this
mechanism. Using an analytical approach, we derived ex-
pressions for the steady state cAMP concentration field
and found conditions for which this mechanism can lead

to signal specificity [5].
Here, we will again examine second messenger com-

partmentalization using analytical techniques but will
now focus on the cAMP concentration profiles in neurons.
We are motivated by recent experiments in rat hippocam-
pal slices [6] which demonstrated that, after stimulation,
cAMP accumulates preferentially at the distal dendrites
and that the soma maintains a low level of cAMP. Thus,
sharp gradients of cAMP exist at the junction between
the dendrites and the soma and it was suggested that the
two domains with sharply different cAMP concentrations
ensure signal specificity.

Using a simple representation of the cell geometry, we
will present asymptotic analytical solutions that quantify
how cell shape and degradation rates affect the spatial
cAMP concentration profiles. This will be done both in
2d and 3d, the latter assuming axial symmetry; for ease
of presentation we have placed the 3d results in an ap-
pendix. Our model does not consider downstream path-
ways, such as protein kinase A (PKA), but is able to cap-
ture the salient ingredients required for second messenger
compartmentalization. Our main result, in agreement
with the numerical findings of Neves et al. [6], is that a
sharp cAMP gradient between the soma and the dendrite
requires a minimum level of signal degradation. Further-
more, we find that the cAMP gradient at the junction
depends critically on the width of the dendrite.

II. MODEL

As in the numerical work of Neves et al. [6], we as-
sume a neuron with the simplified geometry shown in
Fig. 1. It consists of a circle with radius R, represent-
ing the cell body, and a protruding rectangle with length
L and half width w, representing the dendrite. The 3d
version, where the rectangle is replaced by a right circu-
lar cylinder, is presented in the Appendix B. Since the
width of the dendrite is much smaller than the radius of
the soma, i.e. w � R, we can approximate the connect-
ing part of the circle and the rectangle to be a straight
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FIG. 1: The geometry considered in this paper. The circle
with radius R represents the soma, and the rectangle with
length L and half width w represents the dendrite. The
sources for the second messengers are uniformly distributed on
the perimeter, and the degradation molecules are uniformly
distributed in both the soma and the dendrite.

line. Thus, we have

w = R sin θ0 ' Rθ0. (1)

where θ0 is defined in Fig. 1. Note that the surface-to-
volume ratio for the dendrite is much larger than for the
soma.

For simplicity, we will assume that the PDEs are uni-
formly distributed in both the soma and the dendrite.
Thus, the concentration in the circle, C1, and in the
rectangle, C2, obey the diffusion equation with a homo-
geneous degradation rate β

∂C1(r, θ, t)
∂t

= D∇2C1 − βC1, (0 ≤ r ≤ R,−π ≤ θ ≤ π)(2)

∂C2(x, y, t)
∂t

= D∇2C2 − βC2, (0 ≤ x ≤ L,−w ≤ y ≤ w)(3)

where D is the diffusion constant of cAMP and where we
have used a Cartesian coordinate system for the dendrite
and a polar coordinate system for the soma.

It has been shown that the cAMP production machin-
ery is distributed on both the soma and the dendrite
membrane with little [7, 8] to no [9] observable spatial
heterogeneity. Thus, it is reasonable to assume that the
neuron has a constant cAMP source flux, f with unit
1/(sµm), on the entire membrane. Therefore, the bound-
ary conditions on the various parts of the membrane read

∂C1(R, θ, t)
∂r

=
f

D
, (θ0 ≤ θ ≤ 2π − θ0) (4)

∂C2(L, y, t)
∂x

=
f

D
, (−w ≤ y ≤ w) (5)

∂C2(x,±w, t)
∂y

= ± f

D
, (0 ≤ x ≤ L). (6)

We require that the concentration at the connection be-
tween the soma and the dendrite is continuous. Thus,
under the condition that w � R, we have

C1(R, θ, t) = C2(0, y, t), (−θ0 < θ < θ0) (7)
∂C1(R, θ, t)

∂r
=

∂C2(0, y, t)
∂x

, (−θ0 < θ < θ0) (8)

where y ' Rθ.

III. RESULTS

We will focus here on steady state solutions which can
be found by setting the left hand sides of Eqn. (2, 3) to
zero. Then, a general steady state solutions for C1(r, θ)
and C2(x, y) can be obtained as

C1(r, θ) =
∞∑

m=0

Bm
Im(r/l)
I ′m(R/l)

cos mθ

+
f√
βD

π − θ0

π

I0(r/l)
I ′0(R/l)

−
∞∑

n=1

2f√
βD

sinnθ0

nπ

In(r/l)
I ′n(R/l)

cos nθ, (9)

C2(x, y) =
∞∑

n=0

An[ex
√

( 1
l )2+( nπ

w )2

+ e(2L−x)
√

( 1
l )2+( nπ

w )2 ] cos(nπ
θ

θ0
)

+
f√
βD

cosh(x/l)
sinh(L/l)

+
f√
βD

cosh(y/l)
sinh(w/l)

, (10)

where l =
√

D
β is a decay length. Here, and in the re-

mainder of the paper, In represents the modified Bessel
function of the first kind, and ′ represents the derivative
of the argument. The coefficients Bm are determined by
An through Eqn.(8),

B0 =
l

2π

∫ θ0

−θ0

g(θ)dθ, (11)

Bm =
l

π

∫ θ0

−θ0

g(θ)dθ,m = 1, 2, 3, ... (12)

where function g(θ) is the gradient at the connection of
the circle and the rectangle, i.e. a function of An, for
−θ0 < θ < θ0

g(θ) =
∂C2(0, y)

∂x
=

∞∑
n=0

An

√
(
1
l
)2 + (

nπ

w
)2[1

− e2L
√

( 1
l )2+( nπ

w )2 ] cos(nπ
θ

θ0
). (13)

To determine An, we can apply the continuity condition
Eqn.(7) which results in a set of countable infinite lin-
ear equations for An: MA = a where M and a are a
matrix and column vector with infinite dimension deter-
mined by Eqn.(7), respectively, and where A is the vector
A0, A1, ....

The resulting linear algebra problem is difficult to
solve, even numerically. Fortunately, as we will see be-
low, for thin dendrites the series converges rapidly and
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the first coefficient A0 can be calculated in the limit
w = θ0 → 0. Let us use c1,2 to represent the concen-
trations for this limiting case, which can be related to
C1,2 respectively, as follows

c1(r, θ) = lim
θ0→0

C1(r, θ), (14)

c2(x) = lim
w→0

∫ w

−w

C2(x, y)dy. (15)

The diffusion equation and boundary condition for c1 are
identical to Eqn.(2) and Eqn.(4) while the diffusion equa-
tion for c2 becomes one dimensional:

0 = D
d2c2

dx2
− βc2 + 2f, (16)

with as boundary condition

dc2(L)
dx

= lim
w→0

∫ w

−w

f

D
dw = 0. (17)

The continuity equation Eqn.(7, 8) at the junction of the
dendrite and the soma reduces to

c2(0) = lim
θ0→0

∫ θ0

−θ0

Rc1(R, θ)dθ = 0, (18)

∂c1(R)
∂r

=
f

D
+

J

DR
δ(θ), (19)

dc2(0)
dx

=
J

D
, (20)

where J denotes the flux from the dendrite to the soma
with units 1/s. The proof of the last identity in Eqn.(18)
is given in Appendix A. c2(0) = 0 reflects the fact that
in this extreme case, molecules at the junction flow into
the soma and never flow back to the dendrite. Solving
the above equations leads to an analytic expression

J = 2fl tanh(L/l), (21)

c1(r, θ) =
f√
βD

I0(r/l)
I ′0(R/l)

+
f

βR

tanh(L/l)
π

I0(r/l)
I ′0(R/l)

+
2f

βR

tanh(L/l)
π

∞∑
n=1

In(r/l)
I ′n(R/l)

cos nθ, (22)

c2(x) =
2f

β
− 2f

β

ex/l

1 + e2L/l
− 2f

β

e(2L−x)/l

1 + e2L/l
. (23)

Comparing the coefficients of c1,2 and C1,2 through
Eqn.(14, 15), we find

A0 = − f

βw

1
1 + e2L/l

, (24)

B0 =
f

βR

tanh(L/l)
π

+ o(w), (25)

Bm =
2f

βR

tanh(L/l)
π

+ o(w),m = 1, 2, 3, ... (26)

Therefore, we can obtain an approximate form of the
concentration in the soma

C1(r, θ) =
∞∑

n=1

2f

βR

tanh(L/l)
π

In(r/l)
I ′n(R/l)

cos nθ

−
∞∑

n=1

2f√
βD

sinnθ0

nπ

In(r/l)
I ′n(R/l)

cos nθ

+
f

βR

tanh(L/l)
π

I0(r/l)
I ′0(R/l)

+
f√
βD

π − θ0

π

I0(r/l)
I ′0(R/l)

+ o(w), (27)

and in the dendrite

C2(x, 0) =
f√
βD

cosh(x/l)
sinh(L/l)

+
f√
βD

1
sinh(w/l)

− f

βw

cosh((L− x)/l)
cosh(L/l)

+ o(
1
w

). (28)

Furthermore the gradient at the junction reads in this
limit

∂C2(0, 0)
∂x

=
f

w
√

βD
tanh(L/l) + o(

1
w

). (29)

In Fig. 2 we plot the approximate solution in the den-
drite as a function x (solid line), along with the full solu-
tion obtained by numerically solving the model (dotted
line) for two different dendrite widths. As we can see, the
approximate concentration is quite close to the numeri-
cal solution away from the soma but starts to deviate
closer to the soma. The analytical solution is a function
of w, of course, and approaches the numerical solution
as w get smaller. This is also demonstrated in Fig. 3A
where we plot the gradient at the junction of the the
soma and the dendrite for both the full solution (circles)
and our analytical approximation (solid line). Clearly,
the error between the two results, plotted in Fig. 3B,
becomes smaller as the width of the dendrite decreases,
consistent with the expectation that the analytical so-
lution converges to the full solution as w → 0. We note
here that our results can be extended to three dimensions
as shown in Appendix B.

IV. DISCUSSION

The main advantage of having analytical expressions
for the concentrations in the two compartments and the
concentration gradient at the junction is that it becomes
easier to assess the effect of the system parameters on
compartmentalization. From Eq. 27 we see that the con-
centration at the center of the soma can be approximated
by

C1(0, 0) ' f

I ′0(R/l)

(
tanh(L/l)

βπR
+

1√
βD

)
(30)
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FIG. 2: (Color online) A comparison between the analytical
approximation (solid line) and the numerical result (dotted
line) for the cAMP concentration in the dendrite along the
symmetry line for w = 0.1µm (A) and w = 1µm (B). Other
parameters used are R = 10µm, L = 100µm, f = 20s−1, D =
200µm2/s, β = 10s−1.
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FIG. 3: (Color online) A: A comparison between the analyt-
ical approximation (solid line) and the numerical result (cir-
cles) for the gradient at soma-dendrite junction as a function
of w. B: The corresponding error as a function of w−1. Other
parameters used are R = 10µm, L = 100µm, f = 20s−1, D =
200µm2/s, β = 10s−1.

Upon inspection of this equation, we can conclude that
the cAMP concentration in the soma is largely indepen-
dent of the length of the dendrite provided that this
length is much larger that the decay length l. Further-
more, the concentration is independent of the width of
the dendrite and thus, for small w and L >> l, the soma
concentration depends only weakly on the geometry of
the dendrite and is mostly determined by the degrada-
tion rate β.

A similar analysis can be carried out for the concen-
tration in the middle of the dendrite (x = L/2), where
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FIG. 4: (Color online) Numerical results without degrada-
tion mechanism for different widths of the dendrite w =
0.5, 1.0, 1.5, 2.0µm (from left to right respectively). The ra-
dius of the soma was taken to be R = 10µm and the length of
the dendrite was chosen to be L = 100µm. Other parameters
are f = 20s−1, D = 200µm2/s, T = 300s.
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FIG. 5: (Color online) Numerical results with degradation
rate β = 10s−1 for different widths of the dendrite w =
0.5, 1.0, 1.5, 2.0µm (from left to right respectively). Param-
eter values are as in Fig. 4.

we find from Eq.(28)

C2(L/2, 0) ' f

βw

(
1− cosh(L/(2l))

cosh(L/l)

)
+

f√
βD

cosh(L/(2l))
sinh(L/l)

(31)
Thus, the cAMP level in dendrite decreases as the degra-
dation rate increases but is also strongly dependent on
the width of the dendrite. We note that for L >> l the
concentration reduces to the simple form C2(L/2, 0) '
f

βw . We can also conclude that the largest gradient of
cAMP occurs at the junction between the soma and the
dendrite and Eq.(29) shows that this gradient is inversely
proportional to w and to the square root of the diffusion
constant and the degradation rate. It also shows that
the radius of cell body has no effect on the gradient. In
fact, for L >> l the gradient becomes independent of the
length of the dendrite and the only geometric dependence
is through the width: ∂C2(0,0)

∂x ' f
w
√

βD
.

Finally, we have performed numerical simulations, us-
ing MATLAB’s PDE Toolbox, to confirm the role of
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degradation and geometry on the concentration fields in
the soma and dendrite. Fig. 4 shows the cAMP con-
centration in a color scale in the absence of degradation
(β = 0) using C1(r, θ) = C2(x, y) = 0 as initial condition.
Clearly, this is an unrealistic situation as the concentra-
tion would increase indefinitely as long as the flux is con-
stant. Nevertheless, we can investigate the dependence
of the cAMP fields in the two compartments by plotting
the concentration at a particular time. This is done in
Fig. 4 for 4 different values of w and T = 300s. We can
see that the concentration in the dendrite increases sig-
nificantly if the width becomes smaller. However, in sup-
port of our analysis above, the concentration in the soma
increases as well and the resulting high concentration in
both the soma and the dendrite would make it difficult to
achieve signal specificity. In Fig. 5 we show the steady
state cAMP concentration for the same set of dendrite
widths and a non-zero degradation constant. Again, the
results are shown for T = 300s, chosen such that the
concentration has reached a steady state, starting at the
same initial condition as in Fig. 4. As is evident from
the figures, the introduction of cAMP degradation is able
to drastically reduce the concentration of cAMP in the
soma while maintaining a high cAMP level in thin den-
drites. The results also show that w has little effect on
cAMP level in the soma, again verifying our analytic re-
sults above.

In summary, we have derived analytical solutions for
the cAMP concentration field in a simplified neuronal
geometry where the difference in surface-to-volume ratio
between the soma and the dendrite, coupled with a con-
stant cAMP flux, leads to compartmentalization [6]. We
find that the expression become particularly easy to an-
alyze in the limit of thin dendrites. Our solutions show
that a sufficient level of degradation, along with a den-
drite with a width that is much smaller that the radius
of the soma, does lead cAMP compartmentalization and
offers a mechanism for signal specificity.

V. APPENDIX A

Here, we will present a proof of the last identity in
Eqn.(18): limθ0→0

∫ θ0

−θ0
Rc1(R, θ)dθ = 0. From Eqn.(2)

with the left hand side set to zero and the boundary
condition Eqn.(19), we can obtain the general solution
for c1 at the junction −θ0 < θ < θ0

c1(R, θ) = [
f√
βD

+
1
2π

J√
βDR

]
I0(R/l)
I ′0(R/l)

+
1
π

f

D

∞∑
n=1

In(R/l)
(R/l)I ′n(R/l)

cos nθ, (32)

where J is an unknown constant. The first term
of c1(R, θ) is independent of θ, so the limit of
the first term’s integration gives zero. Thus, we
need to prove limθ0→0 Q(θ0) = 0, where Q(θ0) =

∫ θ0

−θ0

∑∞
n=1

In(R/l)
(R/l)I′

n(R/l) cos nθdθ. Since we can not
change the order of the integral with the infinite sum-
mation, we will find the upper and lower bound of Q(θ0)
instead. It is easy to show that for positive arguments x

n + 1
n(n + 1) + x2

2

<
In(x)
xI ′n(x)

<
1
n

, n = 1, 2, 3, ... (33)

Thus, we have

| In(x)
xI ′n(x)

cos nθ − cos nθ

n
| ≤ | In(x)

xI ′n(x)
− 1

n
|| cos nθ|

≤ | In(x)
xI ′n(x)

− 1
n
|

=
1
n
− In(x)

xI ′n(x)

<
1
n
− n + 1

n(n + 1) + x2

2

=
x2

2
1

(n + 1)n2 + x2

2 n

<
x2

2
1

(n + 1)n2
. (34)

Therefore, for each n, In(x)
xI′

n(x) cos nθ is bounded as follows

cos nθ

n
− x2

2
1

(n + 1)n2
<

In(x)
xI ′n(x)

cos nθ

<
cos nθ

n
+

x2

2
1

(n + 1)n2
. (35)

Thus, the upper and lower bound of the infinite summa-
tion is given by

∞∑
n=1

cos nθ

n
± 1

2
(
R

l
)2

∞∑
n=1

1
(n + 1)n2

=
1
2

log
1

2− 2 cos θ
± 1

2
(
R

l
)2(

π2

6
− 1). (36)

By integrating Eqn.(36) from−θ0 to θ0, we find the upper
and lower bound of Q(θ0)

i[Li2(e−iθ0)− Li2(eiθ0)]− (
R

l
)2(

π2

6
− 1)θ0 < Q(θ0)

< i[Li2(e−iθ0)− Li2(eiθ0)] + (
R

l
)2(

π2

6
− 1)θ0,(37)

where Li2 denotes the dilogarithm function. Taking the
limit of θ0 → 0 in Eqn.(37), both the lower and upper
bound go to zero, so that limθ0→0 Q(θ0) = 0 and, hence,
limθ0→0

∫ θ0

−θ0
Rc1(R, θ)dθ = 0.

VI. APPENDIX B

The analytic solutions found in two dimensions can
be extended to three dimensional geometry. By rotating
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FIG. 1 around the x-axis, we can arrive at a 3D model
with the cell body as a sphere with radius R, and the den-
drite as a cylinder with length L and radius w. Since the
dendrite is very thin compared to the soma, i.e. w � R,
Eqn.(1) remains valid. The concentration in the sphere,
Ĉ1(r, θ, ϕ), and in the cylinder, Ĉ2(x, ρ, ϕ), obey the dif-
fusion equation with a homogeneous degradation rate β
as in Eqn.(2,3), but now written in. n spherical and cylin-
der coordinate, respectively, where 0 ≤ r ≤ R, 0 ≤ θ ≤ π,
0 ≤ x ≤ L, 0 ≤ ρ ≤ w and 0 ≤ ϕ ≤ 2π. Because of the
symmetry around x-axis, both concentration fields are
independent of ϕ and they become effectively two dimen-
sional: Ĉ1(r, θ, ϕ) = Ĉ1(r, θ) and Ĉ2(x, ρ, ϕ) = Ĉ2(x, ρ).

In the 3D case, the constant cAMP source flux, F, has
units of 1/(sµm2), and the boundary conditions read

∂Ĉ1(R, θ)
∂r

=
F

D
, (θ0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π) (38)

∂Ĉ2(L, ρ)
∂x

=
F

D
, (0 ≤ ρ ≤ w, 0 ≤ ϕ ≤ 2π) (39)

∂Ĉ2(x,w)
∂ρ

=
F

D
, (0 ≤ x ≤ L, 0 ≤ ϕ ≤ 2π). (40)

Since w � R, we can approximate the junction of the
sphere and the cylinder to be a disk, and we require that
the concentration and gradient at the dist to be contin-
uous

Ĉ1(R, θ) = Ĉ2(0, ρ), (0 ≤ θ < θ0, 0 ≤ ϕ ≤ 2π) (41)

∂Ĉ1(R, θ)
∂r

=
∂Ĉ2(0, ρ)

∂x
, (0 ≤ θ < θ0, 0 ≤ ϕ ≤ 2π) (42)

where ρ ' Rθ.
Therefore, the steady state solution can be obtained as

Ĉ1(r, θ) =
∞∑

m=0

B̂m
im(r/l)
i′m(R/l)

pm(cos θ)

+
F√
βD

1 + cos θ0

2
i0(r/l)
i′0(R/l)

+
∞∑

n=1

F√
βD

1
2
[pn+1(cos θ0)

− pn−1(cos θ0)]
in(r/l)
i′n(R/l)

pn(cos θ), (43)

Ĉ2(x, ρ) =
∞∑

n=0

Ân[ex
√

( 1
l )2+k2

n

+ e(2L−x)
√

( 1
l )2+k2

n ]J0(knρ)

+
F√
βD

cosh(x/l)
sinh(L/l)

+
F√
βD

I0(ρ/l)
I ′0(w/l)

, (44)

where in and Jn represent the modified spherical Bessel
function of the first kind and Bessel function of the first
kind respectively, kn is the n-th root of J1(knw) = 0, and

Pm
n denotes the Legendre function. Here pn = P 0

n . The
coefficients B̂m are determined by Ân through Eqn.(42),

B̂m =
2m + 1

2
l

∫ θ0

0

ĝ(θ)pm(cos θ) sin θdθ,m = 0, 1, 2, ...

(45)
where ĝ(θ) is the flux from the dendrite to the soma,
given by

ĝ(θ) =
∂Ĉ2(0, ρ)

∂x
=

∞∑
n=0

Ân

√
(
1
l
)2 + k2

n[1

− e2L
√

( 1
l )2+k2

n ]J0(knρ). (46)

To determine Ân, one needs to solve Eq.(41), which is a
difficult task.

Similarly to out two dimensional case, we can consider
the limiting case w = θ0 = 0, i.e. a sphere connected
to a line. We use ĉ1,2 to represent the concentrations for
this limit case, which can be related to Ĉ1,2 as follows

ĉ1(r, θ) = lim
θ0→0

Ĉ1(r, θ), (47)

ĉ2(x) = lim
w→0

∫ 2π

0

∫ w

0

Ĉ2(x, ρ)dρdϕ. (48)

The diffusion equation and boundary condition for ĉ1

are identical to Eqn.(2) and Eqn.(38) while the diffusion
equation for ĉ2 becomes one dimensional:

0 = D
d2ĉ2

dx2
− βĉ2 + 2f, (49)

where f = πwF . The boundary condition is

dĉ2(L)
dx

= lim
w→0

∫ 2π

0

∫ w

0

F

D
ρdρdϕ

= lim
w→0

∫ 2π

0

∫ w

0

f

πwD
ρdρdϕ = 0. (50)

and the continuity property at the junction reduces to

ĉ2(0) = lim
θ0→0

∫ 2π

0

∫ θ0

0

R2 sin θĉ1(R, θ)dθdϕ

= 0, (51)
∂ĉ1(R)

∂r
=

f

πwD
+

J

DR2
δ2(θ, ϕ), (52)

dĉ2(0)
dx

=
J

D
, (53)

where δ2(θ, ϕ) denotes the Dirac delta function in spher-
ical coordinates. Solving the above equations leads to an
analytic solution

J = 2fl tanh(L/l), (54)

ĉ1(r, θ) =
f

βR2

tanh(L/l)
π

∞∑
n=0

(2n + 1)
in(r/l)
i′n(R/l)

pn(θ)

+
f

πw
√

βD

i0(r/l)
i′0(R/l)

, (55)

ĉ2(x) =
2f

β
− 2f

β

ex/l

1 + e2L/l
− 2f

β

e(2L−x)/l

1 + e2L/l
. (56)



7

Comparing the coefficients of ĉ1,2 and Ĉ1,2 through
Eqn.(47, 48), we find

Â0 = − F

βw

1
1 + e2L/l

, (57)

B̂m = (2m + 1)
πwF

βR2
tanh(L/l) + o(w2),

m = 0, 1, 2, ... (58)

Therefore, we can obtain an approximate form for the
concentration in the soma

Ĉ1(r, θ) =
πwF

βR2
tanh(L/l)

∞∑
n=0

(2n + 1)
in(r/l)
i′n(R/l)

pn(cos θ)

+
F

2
√

βD

∞∑
n=1

[pn+1(cos θ0)

− pn−1(cos θ0)]
in(r/l)
i′n(R/l)

pn(cos θ)

+
F√
βD

1 + cos θ0

2
i0(r/l)
i′0(R/l)

+ o(w2), (59)

and in the dendrite

Ĉ2(x, 0) =
F√
βD

cosh(x/l)
sinh(L/l)

+
F√
βD

1
I ′0(w/l)

− F

βw

cosh((L− x)/l)
cosh(L/l)

+ o(
1
w

). (60)

Furthermore the gradient at the junction reads in this
limit

∂Ĉ2(0, 0)
∂x

=
F

w
√

βD
tanh(L/l) + o(

1
w

), (61)

similar in form to the two dimensional case.
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