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Abstract Eukaryotic cells are able to sense shallow chemical grasliey surface receptors and migrate
toward chemoattractant sources. The accuracy of this ctatio response relies on the ability of cells to
infer gradients from the heterogeneous distribution oépors bound by diffusing chemical molecules. Ulti-
mately, the precision of gradient sensing is limited by thetfiations of signhaling components, including the
stochastic receptor occupancy and noisy intracellulacgssing. Viewing the system as a Markovian com-
munication channel, we apply techniques from informatioeoty to derive upper bounds on the amount of
information that can be reliably transmitted through a cbhtatic cell. Specifically, we derive an expression
for the mutual information between the gradient directiod ¢he spatial distribution of bound receptors. We
also compute the mutual information between the gradieneiction and the motility direction using three
different models for cell motion. Our results can be useduanify the information loss during the various
stages of directional sensing in eukaryotic chemotaxis.

Keywords Chemotaxis Stochasticity Mutual Information

1 Introduction

The directed movement of cells up or down a chemical gradg&ekbown as chemotaxis. Although the un-
derlying mechanisms are fundamentally different, bottkargotic and eukaryotic cells employ chemotaxis
as a way to direct cell motion. Bacteria direct their motigmbeasuring and comparing chemical concentra-
tions over time [1]. Eukaryotic cells, on the other hand, rmrech slower and larger and are able to measure
concentration differences in space. These eukaryotis,dbk focus of our study, plays an important role in
a variety of biological processes, including neuronalgraihg, wound healing, embryogenesis, and cancer
metastasis [2—-4].

The sensitivity of eukaryotic cells to gradients can be exiely high: both neutrophils and the social
amoebaDictyostelium discoideurrells can detect a 1-2% difference in concentration of tremabattractant
between the front and the back of the cell [5-7] and experim@ith growth cones have claimed to exhibit
axonal guidance in concentration differences as little. 4%]8]. Naturally, the question of how cells achieve
such a high degree of sensitivity has attracted consideratbdéntion. Clearly, chemotaxing cells are able
to translate a shallow external gradient into a much larggrnal asymmetry and this directional sensing
capability has been the subject of numerous theoreticdiestjo-15].

In eukaryatic cells, the first step in the chemotactic preaamsists of the binding of the chemoattrac-
tant to specific G-protein coupled receptors on the cell nramd In the case of a chemoattractant gradient,
this binding results in an asymmetric distribution of ligeoccupied receptors. These receptors then activate
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multiple second-messenger pathways inside the cell,hgadi asymmetric internal distributions of a multi-
tude of signaling molecules. Eventually, these pathwaiyg&dhe formation of actin-filled protrusions called
pseudopodia. These pseudopodia are formed prefererdiathe front, the side of highest chemoattractant
concentration, and, together with a myosin-based tragitige which pulls in the rear, results in directed cell
movement. Many of the components responsible for tramgjakie external chemoattractant gradient into cell
motility are known and are conserved across species (fentaeviews, see [16—18]). The precise physical
mechanism of this translation, however, remains poorlyeusitod.

The binding of ligand molecules to chemoreceptors is anraitéy noisy process and the question how
noise influences cell motility has generated significargremt [7,19-28]. One way to study the effect of
noise on the chemotactic process is to use information ¢iecepproaches [7,29]. We recently performed
a theoretical investigation of the mutual information, aasgre of the amount of information that two noisy
variables share, between the input gradient direction hedésulting spatial distribution of ligand-bound
receptors [7]. For shallow gradients, we were able to otdpjproximate analytical expressions. Using a large
experimental data set, we were also able to compute nuniigribe mutual information between the input
gradient direction and the motility direction in the expeeints. Comparing these two quantities allowed us to
determine how much information was lost during intercellyrocessing.

Here, we extend our previous analysis and use informatieor#tic approaches to derive an explicit
formula for the mutual information between the input gradidirection and the resulting distribution of
ligand-bound receptors. Thexternalmutual information reflects how the external receptor néireés the
gradient information acquisition at the cell membrane arwvides an upper bound on the amount of infor-
mation that can be reliably transmitted during gradiensgemat the receptor level. Furthermore, we propose
and study several stochastic models that connect the ekteceptor signal to the output of chemotactic di-
rection. These models allow us to calculate, analytically/ar numerically, the mutual information between
the input source direction and the output chemotactic respangle. We will call this thehemotactienutual
information to distinguish it from the external mutual infeation. It quantifies the total information obtained
by a chemotactic cell and will be at most equal to the extenmatiual information. In fact, by comparing
this quantity to the external mutual information, we cared@ine how much information is dissipated due to
intracellular fluctuations and nonlinear signal procegsin

2 Results
2.1 Spatial distribution of stochastic ligand-receptarding

Our modelis shown in Fig. 1, along with the relevant notatiod the various steps in the chemotactic process.
We assume a circular cell with diametethat is placed in a chemoattractant gradient with direcfioA large
number of receptors (typicalliy =~ 80,000) is uniformly distributed on the cell surface, actinglasantennae
for gradient sensing. Each receptor switches indepengdbativeen two states, either empty (0) or occupied
(1), with transition rates determined by the local concatitn and the relevant chemical kinetics. Therefore,
these receptors in a snapshot constitute a series of indepeBernoulli random variables, represented by

for n=1,...,N. Q)

)L with probability By,
M=) 0,  with probability 1—P,,

If the local concentration near ting, receptor i<C,,, then the probability of occupancyfs = C,/(Ch+Kq) for
simple ligand-receptor kinetics with dissociation const&;. We divide the cell intdVl small sensory sectors
such that each sector contains several hundreds of reseptposing to almost the same local concentration.
The gradient field at which the cell is situated can be fullyatibed by the average local concentrat@y,

L aC

the gradient steepnegs= Coq o and the gradient directiop. The steepnesp reflects the percentage

concentration change across the cell lerigth

The local concentration at thmy, sector with angular positiog, is given byCrp = Cigcal[1+ ‘—2’ coq¢m—
¢)]. Neglecting any temporal correlation of receptors, we fimat the number of occupied receptors in the
M, sector isYm = E[Ym] + Nm = NsCm/(Cm+ Kqg) + Nm for m=1,...,M, with (m(t)Nn(s)) ~ NsCmKgd(t —
S)mn/(Cm + Kqg)? [22] and whereNs = N/M. In this way, the receptor signal is decomposed iMtinde-
pendent but non-identical Gaussian random variables,tddy Y = {Y1,Y>,...,Yu} . Hereafter, boldface
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Fig. 1 lllustration of the information flow in eukaryotic chemotaxA chemical gradient with directiop is first detected by
receptors on the cell membrane, resulting in a spatiallgrogeneous distribution of receptor occupancy, represdnyY or the
sufficient statisticZ. The noisy receptor signal is further transmitted througteicellular pathways, which convert the external
asymmetry into an internal one. Ultimately, this leads tectied cell motion toward the chemical source, represeyethe
moving angled. We consider a two-dimensional circular cell with a largenfaer of independent receptors uniformly located
on the cell perimeter.

symbols denote vectors, and the superscript symignotes the transpose. For small gradiepts (0.1),
we can expanily, in p, resulting in

_ NsCiocal [1+ jp CO$¢m - (P)] + N ~ NsCiocal NsKdCiocal
Kd +Ciocal + FQ)Clocal cog pm— @) ™™ Kq + Ciocal 2(Ciocal + Ky

m

2 pcosém— @) + G(p?) + Nm,

(2)
To leading order irp, the covariance is written a#)m(t)nn(s)) ~ NsKgCiocal(t — S)8mn/ (Ciocal + Kq)? = 02
and is the same for all sectors. Thus, the receptor sigral Y1, Y, ...,Ym ' is a vector of independent Gaus-
sian random variables with different means but approxitgatientical variances?. Note that our approach
uses the assumption that we can subdivide the membranenoiépéndent sectors. This assumption is rea-
sonable since there is no direct experimental evidenceinkatidual receptors in chemotaxing eukaryotic
cells are coupled. Also, as we will see below, our small gratlexpansion is valid up to at least a gradient
steepness of 20%.

2.2 The external mutual information

Receptors close to the gradient source are more likely tochapmed by ligands than those away from the
source. This results in a heterogeneous distribution ofgheptor occupancy on the cell surface, as reflected
by Eqg. 2. If all the intracellular processes are ignored tiverbest chemotactic decision the cell can make will
be based on the spatially asymmetric distribution of thigptor occupancy. A natural question concerns how
much information can be reliably transmitted in gradienisieg at the cell surface. This can be quantified
by the mutual information between the spatial distributdbibbound receptor¥ and the gradient directiop,
which is chosen randomly from a preassigned distribufiop). By the Bayesian interpretation of probability,
the prior distributionP(¢) expresses the cell’s uncertainty about the gradient dinediefore taking any
measurements into account.



Mutual information is one of the core concepts in informattbeory [30]. In the continuous case, the
definition of mutual information between inpuX) and output(Y), expressed in nats, is

v) — Pxy)
1(X:Y) = /Y /x POCY)IN G iy X @3)

whereP(x,y) is the joint probability density function of andY, andP(x) andP(y) are the marginal proba-
bility density functions. By definition, we haugX;Y) = 1(Y; X). Mutual information quantifies the mutual
dependence of two random variables and is more generaltiearotrelation coefficient which only measures
the linear dependence of two variables.

Since in our model is a high-dimensional random vector, calculating the miunfarmation I (Y; @)
involves a difficult multidimensional integration whichrhaers direct analytical studies. This was shown in
our recent study, where we also presented an expansiondtioatgradients [7]. A more tractable analytical
expression can be found using a statigtie= TM_, Y€ ®™ = Z; 4-iZ, which is sufficientfor the gradient
parameterp (for more details, see the Appendix). In other words, the glemrandom variabl& contains
the full information about the gradient direction aids just as informative as the full observatiovisThus,
1(Z;9) = I1(Y; ) regardless of the input statisti€¥¢). In the Appendix, we show th&, to first order
of p, has a complex Gaussian distribution and that its real arajinary parts are independently normal
with identical varianca? = $NKyCiocal / (Ciocal + K )? but different meansZy ~ .4/ (v cosg, 02) andZ, ~

N (vsing,g?), wherev = pa?/2. In polar coordinates we can wrife= pe¥ where the magnitude variable

p = \/Z?+Z% measures the degree of asymmetry in the receptor occupaadcyiaere the phase variable

Y = arctariZ,/Z;) is found to be the optimal estimator of the gradient directi31, 32]. As shown in the
Appendix, the magnitudp follows the Rice distribution, denoted IB(p). Assuming thatp is chosen from

a uniform distribution, i.e.P(¢) = 1/(2m), we can find an analytical expression of the mutual infororati
1(Z; ) between the gradient direction add(see Appendix). This expression is a monotone function ef th
signal-to-noise ratiqSNR), k = v?/0? = N p’CiocalKd/(8(Ciocal + Ka)?), and one can derive expressions in
both the small and large limit:

2 pv K <1,

) W ©

wherelg(-) is the modified Bessel function of the first kind and order zbiate that in the small SNR regime,
the asymptotic expression bfZ; @) in Eq. 4 is identical to the approximate result fol; ¢) derived in our
earlier study [7]. A more technical discussion of the vasidimits can be found in the appendix. In Fig. 2A,
we plotl (Z; @) as a function of the gradient steepness (blue dashed lioap with the numerically obtained
values forl (Y; @), using a Monte Carlo method detailed in Ref. [7]. As expectlkd numerical values of
I(Y; @) lie exactly on the theoretical curve bfZ; @) given in Eq. 4. Note that the Monte Carlo method does
not employ a small gradient expansion. Thus, the resultsgofZA demonstrate that the expansion we used
in deriving our theoretical results is valid up to at leastradient steepness of 20%. A plot diZ; @) as a
function ofCoco (Fig. 2B) demonstrates that the mutual information is matiwhenCigca = Kg.

By definition, the mutual information of two random variablmeasures their mutual dependence, or how
much knowing one of these variables reduces the uncertalmyt the other. Hence, the larger the mutual
informationl (Y; @), the less uncertain the cell is about the gradient direapigiven the receptor signal. In
fact, for a Gaussian channel, one can prove thatihemum mean-square errgMMSE) in estimating the
input given the output is related to the mutual informatibis given by twice the first-order derivative of the
mutual information with respect to the SNR [33]. In our cabke,channel is asymptotically Gaussian at large
values of the SNR, and this elegant relationship suggeststitt MMSE in estimating given the observation
Y is equal to ¥k or a2/v?. This is exactly the asymptotic variance of the optimalreatory for the gradient
parameter, i.e., ~ A (@,1/k); see Appendix for more details. As an information meastre external
mutual informationl (Z; ¢) also sets an upper bound on the amount of information thdtldmuachieved at
the cell surface in a single snapshot. We can use it as a benkhocompare with the information ultimately
gained by the chemotactic cell, as to be examined in the eekios.
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Fig. 2 The external and chemotactic mutual information for a céhwiameteilL = 10um, disassociation constali = 50nM,
number of receptorbl = 80000, average local concentrati®igca = 50nM, and added random motility nois% =1.(A) The
external mutual informatioh(Z; ¢) as a function of the gradient steepngssalculated using the analytically derived formula
in Eqg. 4 is plotted as a dashed line while the external mutnfakination obtained using a Monte Carlo algorithm is pldtte
using symbols. The chemotactic mutual informati¢8; ¢) for motility model | is shown as a solid black line and for nibyi
and model Il as a dashed line (B) Chemotactic mutual infaiond{ 8; @) as a function of the average local concentratipfa

for model | and model Il using a fixed gradient steepnpss 0.1. Also plotted, as a solid blue line, is the external mutual
informationl (Z; ¢). (C) Chemotactic mutual informatidri; ) as a function of the gradient steepngdsr the Bl model. The
model parameter values akg= 1051, k, = 3um/s, k_a = 0.25"1, k_p, = 0.2s72, k; = 100Qum(s- molecul§ 1, D = 10un?/s,
and D, = 0.1un?/s. As a comparison, the external mutual informatid@; @) is plotted as a solid blue line. (D) External
mutual information for biased input statistigiased Z; @), as a function of the prior knowledge about the gradientrésgnted
by k’/k). The dashed line showgiased 6; @) for model I usingp = 0.1. Note that the parameteris determined by the other
given parameters.

2.3 The chemotactic mutual information

The asymmetry of the receptor signal is amplified throughri@sef intracellular signaling events which even-
tually give rise to the chemotactic response (see Fig. 1§.rébeptor noise will propagate through the internal
signaling networks which themselves are intrinsicallysyaand may further interfere with the chemotactic
decision-making. This noise is independent of the gradiensing mechanism, but intrinsic to the cellular
motility machinery and we will refer to it as theandom motility noiseDue to this additional interference
and due to possible non-linear signal processing, the atajuhe gradient information that a chemotactic
cell ultimately acquires could be much lower than that reegiat the cell surface. In our earlier study, we
computed the information transmission during the entirenehtactic process using experimentally obtained
cell tracks [7]. Here, we will investigate the mutual infation 1 (6; ¢) between the gradient directiap
and the response directi¢ghusing three theoretical motility models. These models hseabove computed
spatial distribution of bound receptors as input and compig resulting motility direction. In the first two
models, the random motility noise is put in by hand” whilge third model we explicitly model a proposed
signaling pathway.

Model I. Since the complex random varialifecontains all the gradient information underlying the re-
ceptor signalY, we can use it as the input for a motility model. This leads tmadel in which the cell
is assumed to linearly transform the receptor sighab determine its direction. The effect of intracellular
stochasticity can then be modeled by simply adding a noise te Z. For convenience, we writé in the
vector form:Z = (Z3,Z,)". The model is defined &8 = arctariZ,/Z;) whereZ = (Z1,Z)" = BZ + Xy.
Here, B is a constant scalar representing the signal amplificatimhX is a two-dimensional white ran-
dom vector with zero mean and autocorrelation mai X ) = o¢l, representing random motility noise.

Then, we have; ~ 4 (Bv cosp, B202 + 0g) andZy ~ A (Bv sing, 202+ af), which implies a new SNR,



K = B2v2/(B20% + 0&). Thus, for large SNR, similar to the phase variatflién Z, the response angle is

asymptotically Gaussia ~ ./ (¢,1/k). Again, using polar coordinates, we can write= pe’® and we
find the mutual information between gradient direction ardtility direction is given by (see Appendix)

I(6;<p)_l(z;q))_ﬁ<In{|0<g§>}>N {ﬁl/\Z/TE/e gii (5)

For finite and positivg8, K < k and hencé(0; @) = 1(Z; p) < 1(Z; p) = 1(Y; ). As expected, the differ-
ence betweeh( 8; @) andl (Y; @) in this linear model is enlarged when the intrinsic motitityised? increases
or when the amplification paramet@rdecreases. If the intrinsic noise is negligible comparatiecamplified
receptor noised? < 202), we havek — k andl(6; @) — 1(Y; ). Thus, in this limit no additional infor-
mation is lost in the internal steps. In Fig. 2A we have plbtted; ¢) as a function of the gradient steepness
(solid black line). For the particular value of the randomtitity noise chosen heré(6; @) is clearly reduced
compared td (Z; @), reflecting the information loss due to noise. In additione @an easily check that,
just ask, has a maximum &iocq = Kg as is shown in Fig. 2B. This can be understood by realizingttiea
applied intracellular linear transformation does notandice an internal response threshold. Note that this
simple model can be generalized easily. For example, weagdaae the scalg by a matrix (not necessarily
symmetric) which provides a way to model any internal asymnynaf the cell.

Model I1. Going beyond linear models, we can implement a more contplicaansformation o to
model the chemotactic response. Ideally, a chemotactigvdktry to align its movement with the estimated
gradient directionp. The efficiency to adjust its direction may depend on thengfte of the receptor signal
(characterized byp) as well as on how responsive the cell is to that signal (patdred bygB). Based on sym-
metry requirements, we introduce a Langevin equation ferctemotactic responsed/dt = —f3psin(6 —

W) + no, whereng represents the random motility noise witiio(t)) = 0 and(no(t)no(s)) = oZd(t —s) [25,
34].
In the small noise limit, we can expand this Langevin equmetiesulting in

O % ~BvSin(8 — @) + Bcos6 — gIny + BSINE — §)1p + o
= —Bvsin(6 — @) + Niot, (6)
with the total noise given by
(nfot) = B?v?(0/v)?cos'(0 — @) + B0 sir’ (6 — ¢) + 0§ = B?0% + 05 = oy ()
Equivalently, this can be rewritten as a stochastic difiteg equation:
do ~ —Bvsin(6 — @)dt + G dW, (8)

whereW is the standard Wiener process or Brownian motion. The debéstic termfv in Eg. 8 can be
interpreted as the mean restoring force that aligns thetaetird the true gradient directiop. Solving the
associated Fokker-Planck equation yields the stationiatsilsition of 8(t) given by

exp(k cog 6 — @)
2o (K)

P(6lg) = 9)
which is known as theircular normal (CN) distribution with modal directionp and shape parametgr=
2Bv/(B?0?+d§). In the limit of smallk, the CN density becomes the uniform distribution, whiletie large

K limit it approaches a Gaussian with variang&1We have performed explicit Monte-Carlo simulations of
the original Langevin equationl@/dt = —p sin(6 — ) + no) and have verified that the resulting directional
distribution of 8 agrees well with the CN distribution obtained from our apgmeate model (Eqg. 8). We can
compute (see Appendix) the mutual informatidf; ) for this model as

_11(K) K?/4—3k*/64+ 0(K®) K<1, 10
lo(K) (k) ~ In\/27K /e K> 1, (10)

wherely(-) is the first kind modified Bessel function of order one. In FAgve plot this mutual information
as a function of the gradient steepness (dashed line, A) fathe dackground concentration (dashed line, B).

1(6; ) =




The mutual information is an increasing function of the dgeat steepness while it reaches a maximum for
Ciocal = Kq.

Model 111. The last class of models we examine here explicitly incates the intracellular dynamics
of second messenger pathways. Thus, instead of using adellitive noise terms as in Model | and Il, we
now represent the intracellular dynamics by a set of padifédrential equations. We will focus here on one
particular directional sensing model, the Balanced Iratitn (Bl) model [10], although we have performed
a similar analysis for other models (data not shown). Intdglel, receptor occupancy triggers the production
of a membrane-bound activatarread-out component) and a cytosolic diffusing inhibBaxt equal ratek,.

The diffusing specieB can attach itself to the membrane at a fagtand become a membrane-bound species
Bmn. Near the membrane, it can irreversibly inactivate the featdcomponen# with ratek;. Both A andB,
have a spontaneous degradation rakeg @ndk_y, respectively) which are assumed to be small compared
with both the activation and the recombination rates. Asitipait for the Bl model we use the stochastic
receptor signaly (¢;) for j = 1...M as computed above. These reactions can be representedfolidivng
mathematical equations:

dA;:IJj) = kaY(9}) —K_aA—kABy+DmO2A,  atthe membrane,
‘mf:;iid’i) = koB—k_pBm— kiABn+Dm02Bm,  atthe membrane, (11)
% = DB, in the cytosol,
with a boundary condition for the outward pointing normatidative of the cytosolic component:
D72 ~kaY (9)) kB (12)

Note that we have taken into account possible membranesitifiuof By, characterized by the membrane
diffusion constanDp,.

We numerically solve this model for a 2D circular cell subdad intoM equal sized sectors and obtain
the steady-statespatial distribution of the read-out componeXp;) for each sectoj = 1,...,M. Specifi-
cally, we generated 1000 independent realizations of thes§lan random vectof and used these as input
to Egns. 12. Importantly, to compute the chemotactic mutufarmation of the Bl model we still need to
relate the read-out component to motility. For this, we d®a spatial filter similar to the one we used be-
fore:Z = yM | A(¢;)€% = Z; +iZ, and@ = arctariZ,/Z1). In this way, we are able to compute the output
direction 8 using the steady-state solutionAffor each realization o¥ . The resulting distribution o al-
lows us to evaluate the mutual informatidf®; @) for the Bl model, using either histogram estimation or
kernel estimation [35,36]. The numerical resultl68; ¢) is plotted in Fig. 2C as a function of the gradient
steepness. Again, as is the case for models | and Il, the iinfaanation of the entire chemotactic process
is reduced compared to the external mutual informati@n ¢). Note, however, that receptor noise is the only
stochasticity we have introduced into the Bl model whereadets | and Il have included extra fluctuations
to account for noisy intracellular biochemical reactioBsice the Bl model is nonlinear, the information re-
duction relative td (Z; ¢) can be attributed solely to the nonlinear signal procesBingownstream second
messengers. We should point out that a direct comparisareleet experimental values of the mutual infor-
mation (as obtained in Ref. [7]) and values obtained fromrmodels is difficult since our models do not
contain an detailed motility module. For example, the mLitufarmation in the experiments saturates as the
gradient steepness is increased (see Fig. 3 in Ref. [7])omitrast, the mutual information in our models is
an increasing function of gradient steepness. This sugdleat the our models do not contain one or more
(unknown) mechanisms that limit the achievable mutualrinfation.

We have also tested how the specific choice of biochemicahpaters can affect the mutual information.
For example, we found that the mutual informatid@; ¢) only shows a slight tendency to increase within
the rangeDpm= 0 - 100un?/s, as shown in Fig. 3A. This range of membrane diffusion cartstancompasses
the physiologically relevant range for membrane boundginst We should note however, that the mutual
information is a monotonic increasing function@f,. The reason for this is that for larger and larger values
of D, the noise gets more and more suppressed. This comes atgéesexof the amplitude in the signal
(i.e., the difference between the maximum and minimum &abfed), which becomes smaller and smaller.
The mutual information, however, is strictly a function bktdirection of the output and does not take this
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Fig. 3 (A) Mutual informationl (6; ¢) for the Bl model as a function of the membrane diffusion cogffitDy,. The error bars
represent the standard deviation of the Monte Carlo sirmuiat (B)1(6; ¢) as a function ok, for the Bl model. In both plots,
we have chosen the following parameter values: 10um, Cigca = 20nM, Kg = 30nM, N = 80000,p = 0.075,ky = 10s 1,
k? :)3um/s (left plot), k_a = 0.2571, k_, = 0.257%, kj = 100Qum(s- moleculg %, D = 10un?/s, andDy, = 0.1un?/s (right
plot).

amplitude into account. A motility module that is downstretom the Bl model will be dependent on this
amplitude but is not part of our calculation. Other numdrieats demonstrated that the mutual information
1(6; @) is only sensitive to the parametiy, which denotes the rate that the diffusible spe@ea=an attach
itself to the membrane and irreversibly become a membranedbspecieB,. Larger values of this parameter
correspond to higher levels 8, and stronger inactivation of the read-out comporfentherefore, the shape
of 1(8; @) as a function of the gradient steepnes=n be most effectively tuned by choosing different values
of ky in the Bl model.

2.4 The effect of a priori knowledge about the gradient

In the previous calculations, the prior distributiBig) has been assumed to be uniform, which can describe
an unbiased cell that has no a priori knowledge about theigmadirectiong [29,37]. This may be the
case when a cell is newly introduced into a gradient. Howdesig exposure to a gradient may bias the
cell such that it expects the gradient to come predomindrniiy some directiony’. To model this a priori
knowledge we can use the circular normal distribution, Pép) = expgk’ cog @ — ¢')]/(2mo(k’)) where

the parametek’ controls the magnitude of the bias. In the limkit— 0, the prior distribution is uniform
(P(e) = 1/(2m)), whereas in the limik’ — o, it tends to be a Gaussian distribution with variange’1l
Without loss of generality, we will se¢f = 0. Then the external mutual information is found to be (see
Appendix)

IbiasedZ; @) = K — (In[lo(PK /V)])p(p) — <h(Kp)>p(p) =1(Z;9) - <h(Kp)>p(p)

N {K (1— [11(K") /1o(K")]2) /2 K<1, 13)
) Iny/2mk /e—h(k") K>1,

whereh(x) = xI1(x)/lo(x) —Inlo(X), Kp ~ K'vp/(k'02+vp) andk” ~ k'K /(k’ 4+ k). The functionh(x) is a
monotone increasing function and is positive fonalt 0. Thus, the biased mutual informatihsed Z; @)

is smaller than the mutual informatidiiZ; ¢) for the unbiased case in Eq. 4 by the amo(hik,)) which
vanishes in the limik’ — 0. This is intuitively reasonable because a priori knowkedgn help reduce the
uncertainty (or entropy) of the input. The reduction in thetual information can be seen in Fig. 2D where
we plotlpias(Z; @) as a function ok’ /k. A similar calculation for model Il results in (see Appenydix

_ oK) lo(K) (K)o ~
|b|ased(ev (p) =K |(];(I/(\) —In Io(l’(\/) —K I;(l’(\/) - |(6, (p) - h(K )’ (14)

wherek’ ~ Kk’/(K + k') andk has been defined iModel 11. Again, the biased mutual information above
is less than the unbiased resi{lf; ¢) in Eq. 10 and the differendgk’) is an increasing function of the bias
paramete’ (Fig. 2D). This implies that(8; @) is maximal whenP(¢) is uniform (i.e.k’ = 0). We have



verified this prediction using the Blahut-Arimoto algorith(see Appendix). Therefore, the mutual informa-
tion in Eq. 10 under the assumption of the uniform prior dlisttion gives, by definition thehannel capacity
which represents an upper bound on the amount of informaiiancan be reliably transmitted through the
chemotactic information system. Similarly, the analyttiesult in Eq. 4 defines the channel capacity at the
external, cell surface level.

3 Discussion

In this paper, we used the concept of mutual informationddysthe role of fluctuations in eukaryotic chemo-
taxis. There are several advantages to using the mutuahiatton as a quantitative measure for chemotactic
efficiency. In contrast to the commonly used chemotaxisirifig it is possible to compute the mutual infor-
mation at different stages of the chemotactic process., Alsan tell us the minimum mean-squared error in
estimating the input after observing the output, regasiédshe input statistics. Finally, the channel capacity,
defined as the mutual information maximized over all inpstrithutions, gives the tightest upper bound on
the amount of information that can be reliably transmitteera communication channel.

We first computed the external mutual information for gratdigensing at the cell surface which is the first
step in the overall chemotactic information processinger&fore, this quantity represents the upper bound
of information that can be transmitted to the intracelludacision-making system. We then proposed and
analyzed three models that incorporate both the extersapter noise and random motility noise and com-
puted their chemotactic mutual information. A comparisetween the external and the chemotactic mutual
information enabled us to determine how the internal sigggrocesses affect the chemotactic performance.
For all three models, we find that the chemotactic mutualrmédion is significantly reduced relative to the
external mutual information. The information reductiortlre linear model | is purely due to the addition of
random motility noise. The third model (Bl model with noissceptor input) specifically models a second
messenger pathway but does not incorporate any motilitgendihus, the information reduction in the third
model is caused by the nonlinear processing of the noisyptecsignal. Finally, the noisy receptor signal in
model Il is processed nonlinearly while this model contadditional random motility noise. These results
together demonstrate that a significant amount of gradidatmation can be lost as a result of either intra-
cellular motility noise or complex signal processing. Iin@ns a challenge to further determine which factor
matters more for specific experimental systems.

Our results are restricted to a snapshot of the recepta@sstanoring any auto-correlation of receptors.
In reality, the receptors are correlated in time and thisgeral correlation of signals changes the rate of
information transmission at the receptor level. For obagown timesT that are comparable to or larger than
the correlation time, the external mutual information Eq. 4 needs to be multipbg a factorT /1. For the
external receptor binding process, this correlation timédtermined by the diffusion and binding/unbinding
of ligand molecules, i.eT = Trec + Tgit, Where Ire¢ is the time-scale of receptor-ligand reaction amng
describes the average time to refresh the configuration fiiystbn. ForDictyosteliumcells, it is estimated
thatTiec > Tyir andTrec ~ 1S, such thatr ~ 1s. For the entire chemotactic process, the correlation tsmedst
likely dominated by the lifetime of a pseudopod. This lifieé has been estimated to be approximately 10-20
seconds iictyosteliuncells [38,39].

In summary, we have used various tools from statistics afairmation theory to gain insights about the
physical limits of gradient sensing and chemotactic efficie Our results may help derive a better under-
standing of the design principles of biological decisioaking systems in general.

A Appendix

A.1 The Sufficient StatistiZ for Gradient Sensing

We first consider how to estimate the gradient directipfrom the receptor signal. Eq. 2 suggests that one can Yiew
{"1,Y2,...;Ym }T as observations of a sinusoidal signal embedded in whites&a@u noise. It then becomes a problem that is
solvable using the Maximum Likelihood Estimation (MLE). By. 2, the probability density function (PDF) ¥fconditional

on the gradient directiop reads (for small gradients < 0.1),

M 2 2
P(Y|@) ~ (2710% exp [—Tigmzl (Ym_V— o—zspcos(d’m— (p)) } ; (15)
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with Y = NeCiocal/(Ciocal + Kg ). This PDF can be factored as

1
P(Y|g) ~ (2o exp 22

1 & (adp? 2 2 : 1 g 72
~5g2 zl( 4 coé(gbm—qo)—aSle(Y)cosqo+ospZz(Y)smqo> -exp fzf‘szn;l(meY) 16)

whereZy(Y) = M, (Ym — Y) cospm = SM_, Yimcospm andZo(Y) = M, (Yo — Y) singm = TM_; Yimsingm. According to the
general Neyman-Fisher Theorem [4d],(Y) andZ(Y) are jointly sufficient statistics for the estimation @f Therefore, we
can introduce the spatial filtg@ = M ; Ynd?m = sM | Ycospm+iIM_; YmsSingm = Zy +iZ2. This complex random variable
itself is the sufficient statistic for the parameter

We can evaluat& by replacing the summation by integral whighis large, and expand the integrand aroynfbr small
gradients. Specifically, we obtain

2m Né? [1+ Scosw| €2 dw  pNGocalKg P40

. 21T
~ ¢ w 2
Elz)~me? [Ty (@)e ) = | 1+Kd/c|oca|+gcosw 21~ 4(Ciocal + Ka)?

(P, an

M M 2MNCrKgcog¢ . NGocaKg 2
Var[z] = mZ nZ Nimin) COSPm COSPy ~ Er. o MGt Ka)? d¢ = 2 Croca 1+ Ka )2 +0(p%), (18)
M M M M
VarZz] = 5 3 {flmitn) singmsingn ~ Vai(Zi],  CoVZ1.Zo] = 5 3 {flmil) cospmingn = 0. (19)
e e m=1n=1

Therefore Z; andZ; are independent Gaussian random variables with differestn® but approximately identical variance. Let

pN chlocal 2 NQOcale
V= —————— and 0° = —/———. 20
4'(Clocal + Kd)2 2(Clocal + Kd)2 ( )

ThenZ = Z; +iZ; follows a complex Gaussian distribution to the first ordeppf

(Zy—vcosp)? + (Z — vsin(p)z]

1
P(Zlsz|x) = 21102 exp[f 252

(21)

In polar coordinates, we writg = pe?. The amplitudep measures the degree of asymmetry in the occupied receptabdi
tion, and the phasg is the MLE of the true gradient directiop. Under the complex Gaussian density in Eq. 21, the amplitude
p follows the Rice distribution:

2,2
_ P ool PV (PY
P(p)fo.zexp|: 20_2 :||0<O_2)7 (22)
wherelg is the modified Bessel function of the first kind and zerotheor@he raw moments for the Rice distribution are
k kok/2 v?
= [ PP(p)dp = 22 (L4 /2 (~ 50 ). (23)

wherel (-) is the Gamma function arid,»(-) is the Laguerre polynomial. So, we have

2
E[p] = M1= O'\/?Ll/z (72%—2> y (24)

Varp] = pip — pi2 = 202 +v2 — - > |_1/2 (72"722) . (25)

For the phase variable, It = — g andé = . Then, as in [41],
P(§) = % |1+ /& cosipet ¥ (1+-erf(& % cosip)) |, (26)
ImP@) =5 and mP(p) - \/Enexp(—z ). (27)

Note that the probability?({) is symmetric aboutl = 0, so the expectation ig)) = 0. This means that the MLE is an
unbiased estimator of the gradient directipn.e. () = ¢ = arctan5% g ; Define thesignal to noise ratiSNR) as

2 _ szclocale ) (28)

\%
K=—5
02 8(Ciocal + Kd)2
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Numerically, it is found that whem /o > 3, bothp andy are approximately Gaussian [41]. In the white noise limit£ 0),
one gets

PRV, Wi (np(0np(s) —075(1—9) = il 5 ) 29)
- 2 8 ocal 2
oty it (yONy(s) = 78t = S 5 g~ Lat-s) (30

As an orthogonal transformation from the Cartesian coaigis,n, is independent of)y. For parameter values that represent
Dictyosteliumcells and for typical experimental conditions, we havefiedlithat the above Gaussian approximation is excellent.

A.2 Calculation of the mutual information

Here, we derive expression for the various mutual infororajuantities in the main text. As mentioned above, w€fix; and
p for simplicity. For the distribution of the gradient dirémt ¢, we consider two cases:

Case 1; unbiased cell: For a cell with no a priori knowledge @, we use the uniform distributioR(¢) = %T The mutual
information ofZ andg is calculated as

Z:9) = H(Z)-HZlo)
f/ P(Z)INP(Z dZ+/PZ\q) InP(z|g)dz

// P(Z|@)dgIn U(p ( )P(Z|(p)d(p} dZ - In(2mec?)

_ 75[/2(/¢P(Z|qo)dqoln U(DP(zm)d(p} dZ — In(ed?)

_ 1 7 P, [P

- *ZT/,,/wT'” [T]pdpdwfln(eaz)
[ P(p)inpdp - [ P(p)InP(p)dp - In(eo?)
Jp Jp

(Inp) +H(p) — In(ed?)

(o (2]),. )

In the above derivation, we have used the following results

dZ = pdpdy,
p*+v pvy _ P(p)
[Pziore = Lexs[ -2 in(25) = P2,

a2 p

(Inp) = AP(p)Inpdp:%F (O 2V22>+Inv
H(p) = Ino®— (Inp) +/P 2+V2dpf/p P(p)In [Io<%>}dp7

= Ino? —<Inp>+1+——<ln [I()(‘;‘;)DP@).

In the small SNR limit (i.e.x = v?/0? < 1), we have Iig(pv/0?) ~ p?v?/(40*). By Eq. 23,(Inlo(pv/0?))p(p) ~
(p?v?/(40%))p(p) = V3(20? + v?)/(40*). Thus, the approximate expression of the external mutdatriration fork < 1 is
1(Z;9) = v?/a? — v?(20% +v?)/(40%) = K /2 — K%/4 ~ Kk /2 + O(k?). Similarly, in the large SNR limik > 1, we found
1(Z; @) =~ v?/a? —In[lp(v?/0?)] — 1/2 = Kk — In[lo(K)] — 1/2. Sincelg(k) ~ €< //2TK ask — oo, we can further simplify the
expressionl (Z; ) ~ In/2nk /e. In summary, the external mutual information is given by:

2
@o=gz(nfo(G)]),, ~{Roame  vor 2

The above equation indicates théZ; @) is solely dependent on the SNRv?/0? = k.

Note that the asymptotic result for small values of the digoranoise ratio coincides with the asymptotic result f@aussian
channel with a normally distributed input [30]. In this caee mutual information can be written é:k)g(1+ k) which s, in the
limit of small kappa simply k /2 — k?/4+ 6(k3). This similarity, however, is coincidental since our chahior small values
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of K is not Gaussian nor has a normally distributed input. Fgdamlues ok, the channel becomes Gaussian (see Eq. 30) but
the input remains uniformly distributed between 0 amd 2

Next, we compute the chemotactic mutual informatidf; ¢). For Model I, the chemotactic response angle is given
by 8 = arctar(Z/Z;) whereZ; ~ ¥ (Bvcosp, 3202 + 0§) andZ, ~ ¥ (Bvsing, 3202 + of). This implies a new SNR:
K = B2v?/(B%0? + 0&). Thus, similar to the phase variablg in Z, the response angle is asymptotically Gaussian, i.e.,
6 ~ 4 (9,1/K). In polar coordinates, we can wri2 = Z; +iZ, = pe® where agairp follows the Rice distribution. Due
to independence, the magnitude variapleloes not tell us anything about the gradient directiprThis means that, for the

complex random variabl, all the information aboup is contained in the phase variatfleIn other words} (Z; ) =1(6;9).
Similar to the calculation off(Z; @), we can easily derive the following

This proves Eq. 5.

For Model I, the response angefollows thecircular normal(CN) distribution. Thus, we can directly find the chemotacti
mutual information:

1(6; ) = // P(6]@)In (?gg’)demp IN27—H(6|¢p) — :;(7‘8 Inlo(R). (34)

whereP(6) = [P(0|@)P(p)d@ = 4 andk = 2Bv/(B%02+ d@). In fact,1(6; ) = h(K) is an increasing function &t and its
limit behaviors are as follows:

1In(2mk /e) K>1
)~ d 2 ’
1(6;9) ~ {gz /4—3K*/64+ 0(K®) K< 1 (39)

Case 2; biased cell: We assume th&(g) = CN(¢/, k') = expk’ co{ ¢ — ¢/)]/(2mtlo(k")), where the parameter’ controls
the degree of directional bias. Without loss of generality,will set¢’ = 0. Then the external mutual information is,

Iniased Z; @) = */Z/ P(Z|p)P(p)dgln [/ P(z|¢)p(¢)d¢} dZ — In(21e0?)
¢ ®
_ _/Z MP(ZW)MW] In [/ P(Z\(p)wd(p] 47 - In(2mec?)

27tlo (k') 2o (K’)
p) exp(Kp cosy) (p) exp(kp cosy)
//w . 7%;’ o In{ . 7271& ; }pdpng—In(Zneaz)
~ [[PteImpdo - | Pip)inP(p)dp - [ Pip) [Kp:;gi‘;i ~Inlo(ky)| dp - n(eo?)

— (Inp) +H(p) —In(ed?) — <Kp:1EK§ |n|0(;<p)>

P(p)

= (V;—i ~(n[10(2)]),,, ~ (koo (36)

wherek, (p) is defined by:;EiZ; = :;Eﬁ:; :;E:ﬁjgi; , Or more convenientl, ~ k'vp/(k’c%+vp). The key result we have used
is

P(2) = [ Plo)P(o)de

B 1 (Z1 — vcos)? + (Zo — vsing)? | exp(k’ cos)
B / 2102 exp[— 202 27o (k') do

f;ex —M /ex k' co +ico + Zsm d
© 4m2a2lg(K") P 202 P s P ¢jae

1 p%4v2? \/ v2p2  2k'vZy
— _ | 22
21o2lo(K’) exp( 202 )\ VK o T

_ P(p) 1 \/,2 v2p2  2k'vpcosy
= 2mo<K'>lo<vp/az)'°< et

P(p) exp(Kp cosy)
Top 2mto(Kp)

@7
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where the last line is inspired by the convolution propefftywa CN distributions: Letp; and ¢, be independently distributed
as CN @, k1) and CN @, K2), respectively. Then the probability density functiongof= ¢1 + ¢2(mod2m) is

P(o=01+¢2) = WJM (/EXp[chos({) — @)+ Kz2c09¢ — 3 — @)]dd
1
= 2mo(K1)lo(K2) lo (\/K12+K22+2K1K2COS(¢ - — (p2)> . (38)

The convolution of two CN distributions is approximately &l @istribution [42], i.e.,P(¢) ~ CN(¢1 + @, k3) whereks is the
solution of'l("3 L (k1) la(k2) . Through numerical testing, we find a more convenient exiveks = K1k2/(K1+ Kz). In sum,

“lo(ka) ™ lo(ka) lg(k2) ©
the following approximation is excellent and useful:
1 expiksCos$ — 1 — )]
— | K2 4 K2 4 2K1K2 CO ) 39
PTio(kD)lo(K2) o( T+ K5 +2K1K2C0$ — 1 — @) 2TT0(Ks) (39)

Now considering the small SNR limik(< 1), we obtain

li(vp/0®) _1vp _li(kp) — 11(K)) li(vp/0?) 1(K/) vp
otvp/o?) ~ 2 07 and therefore, 7" ~ Io(Kﬁ) = 1ok To(vp 07 ~ To(K") 207" (40)

Thus, we have the following approximationmat 1,

e ot ), (S e o (S}
~ (o 204>[ Eiiif-%fz[liﬁiii]z
~ ’; [Io( /ﬂ +O(K). (41)

In the large SNR limi > 1, the expectation and variancemfire asymptotically equal @ ando?. So we can replace by v
when evaluatingh(k, )). Definek” = Kk, (p = v) = k'v2/(k'0? +v?) = k'K / (k' + K). Then,

(h(Kp))p(p) = <Kp :éEZ; —1In |0(Kp)>P(p> ~ K" :ii"; ~Inlo(K") = h(K"). (42)

dth
andthus P L (1—[12(k") /1o(k")]?) /2 K <1, 43
biased Z; §) ~ {K —Inflo(K)] = 1/2—K"11(k") /lo(K") +Inlo(k") K> 1. (43)

We can check the above approximation by considering the khi— o, under which we should havgjasedZ; @) = 0.
Obviously, the approximate expressionl@fsed Z; @) atk < 1 satisfies this limit property. Further, we notice that

im 1K) (k) li(vp/a?) _li(vp/0?)
ke lg(Kp) k- lo(K') lo(vp/02) — lo(vp/o?)’
which means that, — vp/0? and thu” — v2/02 = k. Then, at the large SNR limik(>> 1) and fork’ — oo, we have
Ipiased Z; ©) —In[lo(k)] —1/2—K"12(k")/lo(K") +Inlo(K")
—In[lo(k)] —1/2—kl1(k)/lo(K) + In[lo(K)]
K—1/2—k(1—k/2)
-0, (44)
where we used thdg(x)/lo(x) =~ 1 — %( + f)’(xiz) for largex. In fact, one can directly check thi{Z; ) vanishes at the limit
K' — oo (such thak, — vp/0?) since

Q

l

Q

2

bssalZ:0) = 5= (0o (53)]),,, ~ (2 eivere o (52)]),

vZ  rvpli(vp/d®) p p*+Vv3] . (pv
T o2 /02 Io(vp/oz)_zeXp{_ 202 ] ( )dp

v vp? p2+v pv
*?_‘/ ep{ 202] (52 )de

vz 2

g2 o2
-0 (45)
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Under the directional bias, the chemotactic mutual infdiamefor Model 1l is given by

loased 8 ¢) = | P(6]@)InP(6]p)do — [ P(6)nP(6)ded
~ R:;Eg ~In[2ro(R)] — ?’%fln[zmo( ")
_ &) S a(®) L lo(K')
=0 @) "o o)

5)

E , or more convenientlyk’ ~ Kk’/(K + k’). The key calculation is

/P6|qo

/exp[K cos(@ )] exp(k’ cosy)
2mto(K 2rlo(k’)
1
~ 2mp(K)lo(k')

with K" defined througﬂ—g

exp(k’ cosh)

Io(\/E2 + K2+ 2KK'cosB) ~ = G
0

(47)

A.3 Blahut-Arimoto Algorithm and Channel Capacity

Consider a simple communication chanKel- Y, whereX andY represent the input and output random variables, resgtiv
The maximum mutual information over all marginal input disiition P(x) defines the channel capac@lyi.e.,

C= r"g(%xl (Y;X). (48)

Blahut-Arimoto algorithm provides an efficient iterativeethod of determining the channel capacity [43,44]. Stgrtith an
arbitrary marginal distributiof?(x), the algorithm updateB(x) at each time by:

Pt = 7S POt )

Jx explfy P(yIX) InP(x|y)dy] dx’

with P(X|y) = P(y|X)Poia(X)/P(y). Iteration of the above process will converge to the optimalginal distribution that maxi-
mizesl (Y; X) and thus achieves the channel capacity. In our paper, thetingdule of Eq. 49 becomes

explfp P(61¢) InP(¢|6)d6]

Pren( @) = Jo€xPlf5 P(8]9)InP(¢]6)d6]dg’

(50)

with P(9|6) = P(6|@)Psa(9)/P(6). One can check that wheRyq(9) = 5=, the new marginal distributiofhew(¢) is also
uniform by Eq. 50. First of allP(6) = [,P(6|@)Poia(@)de = %T thusP(¢|6) = P(6|¢)Poia(®)/P(6) = P(6|@). Next, we
notice that

|, P(6I9)InP(9l8)d8 = [ P(6]9)InP(8]g)d8 = —H(Bl¢) = K12(K)/I0(k) — In[2mo(K)] = h(k) ~In(2m), ~ (51)

which is independent ap. Hence,

Prew(®) =

}] - = (52)

Therefore, the uniform source distribution must maximig@; ¢) (and similarlyl (Z; ¢)), implying that our mutual information
results under the unbiased case give the channel capadifesént levels.
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