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We study analytically and numerically a model of N identical globally coupled lasers. We extend
the discussion of the linear stability, presented in a recent paper [Silber et al., J. Opt. Soc. Am.
B 10, 1121 (1993)] for general splay states. For semiconductor lasers, we find that the splay state
is neutrally stable only for a narrow range A, a parameter characterizing the splay state. We draw
the phase diagram for semiconductor lasers using characteristic parameter values. We then analyze
the model numerically, both for semiconductor lasers and for solid-state lasers. We also investigate
the diffusion of the splay state on the solution branch in the presence of a noise term. Finally, we
discuss the linear stability of the periodic two-cluster state found for semiconductor lasers.

PACS number(s): 05.45.+b, 42.62.—b

I. INTRODUCTION

The dynamics of globally coupled oscillators has at-
tracted wide attention in recent years [1-15]. Examples
of such systems can be found in biology (the synchroniza-
tion of fireflies [3]) and in physics (Josephson junctions
[4], coupled laser systems [5], and coupled maps [6]). Al-
though the uncoupled oscillators typically have simple
dynamics, the behavior of the coupled system is often
surprisingly complex. It can consist of entrainment (the
synchronization of the individual oscillators), chaos, and
clustering. Much of the current research focuses on how
such complicated dynamics can arise through global cou-
pling.

In a recent paper, Silber et al. [7] discussed the linear
stability of an array of N globally coupled lasers. In their
paper, they examined three states with simple dynamics:
the off state (the nonlasing state), the in-phase state (the
state with perfect synchronization), and the splay state
(a state where the average vanishes; see below). In this
paper we investigate the model of Silber et al. in more
detail. The analysis is similar to previous work on the
complex Ginzburg-Landau equation [8,9]. We investigate
solid-state lasers and semiconductor lasers, but focus pri-
marily on the latter, since they exhibit a more diverse
dynamical behavior.

Section II reviews the results obtained by Silber et al.
We extend the linear stability analysis for the more gen-
eral splay state (defined below). We plot the phase di-
agram for characteristic parameter values corresponding
to semiconductor lasers. In Sec. III, we discuss our nu-
merical results for solid-state lasers and, in more detail,
those for semiconductor lasers. For certain parameter
values, we find a two-cluster state with either period dy-
namics or spiking pulsations. A discussion of the linear
stability analysis of the periodic two-cluster state follows.
We discuss the diffusion on the splay state branch in the
presence of a noise term. We end with a short discussion.
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II. MODEL

The model equations for N coupled lasers were origi-
nally proposed by Winful and Wang [10]. For the com-
plex field amplitude X and the real normalized inversion
above threshold Z of the jth laser we can write [7,10]

. N
. K

X, =(1—ia)Z; X; + ¥ ’;Xk , (1)

TBth =P- Zj — (1 + 2Zj)|Xj|2 . (2)

In these equations, kK = kg + iKy is the complex coupling
constant [11] between the lasers, taken to be identical for
every laser. P is the excess pump power above threshold
and « is the linewidth enhancement factor. For solid-
state lasers, @ ~ 0, while for semiconductor lasers, o ~
5. Time is measured in units of the photon lifetime 7p
and T is the upper level fluorescence lifetime in those
units. Typical values are T ~ 108 for solid-state lasers
and T ~ 103 for semiconductor lasers. If we define X as

x=-1 i Xy 3)
At ’
we can rewrite (1) as
XX; =(1—ia)Z; X; +ikX . (4)

Silber et al. examined the linear stability of three par-
ticular states: the off state, the in-phase state, and the
splay phase state. The off state corresponds to a non-
lasing state of the system, ie., X; = 0,Z; = P (j =
1,...,N). To examine the stability of the off state one in-
troduces a small perturbation with a growth rate w and
expands around the basic state. The system loses its sta-
bility if w becomes positive. The off state was found to
lose its stability when P = 0 (k7 > 0) and when P = «y
(KI < 0)
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The in-phase periodic state is written as

X;(t) = Xoe' | Z;j=2 (j=1,..,N), (5)
where
P—«
Q=rn-an, Zo=rr, Nl =1L (0

In this state, the lasers are all perfectly synchronized and
have a constant frequency 2. This state exists only when
|Xo|2 > 0. The condition for stability of this state is
expressed as a third-order polynomial

XM +arX+br+c=0, (7
where the coefficients a, b, c are giving by [7]
a=-2:1+C/T,
b=Inf? + (D - Crr)
¢ = C|k|*> = 2D(k1 + arpg) , (8)

where C = (14 2P)/(1+ 2k1) and D = P — kj.

The last state examined by Silber et al. was the splay
phase state [12,13]. In this state the lasers have the same
amplitude but different phases:

X;(t) = Xoe% , Z;=0 (j=1,..,N), (9)

where |Xo|?2 = P, i.e., this state exists only for P > 0.
The crucial property of the splay state is the disappear-
ance of the mean X:

N
D e =0. (10)
k=1

The splay state has been observed experimentally in mul-
timode lasers [5], in an electric oscillator circuit [14], and
numerically and theoretically in other systems (Joseph-
son junctions [15,16] and the complex Ginzburg-Landau
model [8,9]).

Silber et al. examined only one particular splay state,
which we will call the pure splay state. This state cor-
responds to the configuration where the phases are dis-
tributed periodically: 6; = 27j/N. There are, however,
an infinite amount of other possible configurations which
satisfy the condition (10) above.

As discussed in [9], we can classify the splay states by
the parameter A, defined as

N
§ eziek
k=1

A can have values between 0 and 1. In the pure splay
state studied by Silber et al., A = 0. The other extreme,
A = 1, corresponds to two equal size clusters of lasers
with the same amplitude | Xo| but with a phase shift of
T

A= . (11)

The stability of the general splay state can be calcu-
lated using the large symmetry of the system. There are
2N — 4 negative eigenvalues and N — 2 eigenvalues equal

to 0. This is similar to the case in [8,9] where the number
of zero eigenvalues was also N —2. In both cases we have
N oscillators with N arbitrary real phases subject to the
condition that the mean vanishes [Eq. (10) above]. Since
this complex condition gives us two constraints, we find
N — 2 eigenvalues equal to zero.

The remaining six eigenvalues depend on the partic-
ular nature of the splay state. We find a sixth-order
polynomial, which can be written as

2

Ps(A\)P3 (M) — |21 + az)AZP

where P5(]) is the third-order polynomial

XN 4+aX+br+c=0 (13)
with

a=1ik*+(1+2P)/T,

b=[ik* +2P(1 +1ik")]/T,

c=1k*(1 —ia)P/T (14)
and P§(A) its complex conjugate. Note that for A = 0
this reduces to the two third-order equations found by
Silber et al.

We can expand the stability function for large T'. For

the sake of brevity we will give only the result for A =1

and A = 0. For A = 1, one eigenvalue is identical to zero
and for the other five we find

A=A =ik + O(1/T)
As = — (1 +2p 4 2RI, —ZP"RO‘)

|| ||

1
_f + O(I/Tz) ’

A=Al = i,/% - WTJ’P +0(1/T%%) . (15)

For A = 0, the pure splay state in [7], we find
A =1+ 0(1/T) = A3,
Y =iy 2 VT—a
+0(1/T%?) ,
X = —iy| E VT~ i

iPk Pka
—{14+2P+ — + —
(* +|n|2+|»z|2)
1
Fz 00TV (16)

and where the remaining three eigenvalues are given by
the complex conjugate of A\;, Az, and A3. These expres-
sions reduce to the ones of Silber et al. for small a.
From the expansions in 7" we see that « critically deter-
mines the region of stability of the different splay states.
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In solid-state lasers,where a = 0, the splay state loses its
stability at the line x; = 0 for all values of A. This means
that for k1 > 0 every splay state is neutrally stable. For
semiconductor lasers, where a ~ 5, however, we see from
Egs. (15) and (16) that the splay state corresponding to
A =1 has a larger domain in which it is neutrally stable
than the splay state corresponding to A = 0. In partic-
ular, for values of P of order 1, and thus much smaller
than T, the pure splay state is unstable, while the splay
state corresponding to A = 1 is stable. The first splay
state which becomes neutrally stable if one increases x;
is a A not necessarily equal to one. For each value of P
we have to determine this critical value of A.

Silber et al. obtained approximate regions of stability
for the true splay state and the in-phase state in the limit
1/T — 0 and o — 0. In this case, corresponding to solid-
state lasers, the off state is stable to the left of the lines
P = k7 (k1 <0),and P = 0 (k1 > 0), the in-phase state
is stable to the right of the line P = x; and under the
line x; = 0, while the splay state is neutrally stable in
the domain P > 0, xr > 0. In this paper, we are also
interested in semiconductor laser arrays where a ~ 5. For
simplicity we have taken o = 5, T = 103, and kg = 1 for
semiconductor lasers and a« = 0, T = 10%, and kg = 1
for solid state lasers.

In Fig. 1 we have plotted the lines of stability for
the in-phase state and the splay phase state for semi-
conductor lasers. There are three regions where one of
the simple states described above are neutrally stable.
The dash-dotted line limits the stability region of the off
state. The solid line denotes the lower boundary of the
neutrally stable domain of the splay state. Note that the
splay state exists only for P > 0. The dashed line defines
the stability boundary for the in-phase state. In the re-
gion between the dashed line and the solid line there is no
simple stable solution. Note that this is not the case for
the solid-state lasers 7], where there is always a neutrally
stable simple state. For the range of parameter values in
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FIG. 1. The phase diagram for semiconductor lasers. The
regions of stability for the three states are indicated. Note
that there is a domain in which none of the three states are
stable.

Fig. 1, only splay states with A =~ 1 are neutrally stable.
For smaller values of A, the splay state is unstable.

III. NUMERICAL RESULTS

The model was integrated numerically using as initial
conditions a random distribution in the square |X| <
1 and on the line 0 < Z < 1. We have verified that
changing the initial conditions does not affect the results.
We have simulated the equations for the two systems
a=0, T=10%and a =5, T =103,

For solid-state lasers all initial conditions studied here
and for all values of N, we find a final state corresponding
to the phase diagram. If one starts from random initial
conditions in the region where the off state or the in-
phase state is stable, the final state will be the off state
or the in-phase state. If we start in the region where the
splay state is stable, the final result will be a splay state
with a value of A between 0 and 1. In Fig. 2 we have
plotted in the complex plane the values of X; after such
arun (N =10, k; = 0.2 and P = 0.01). The value for
this particular run is A = 0.20.

For semiconductor lasers, as for solid-state lasers, we
find that if we start from random initial conditions and
parameter values for which the off state or in-phase state
is stable, the final state is the off state and the in-phase
state, respectively.

In the region where the splay state is neutrally sta-
ble, however, the system does not always relax to this
state. In fact, only for physically unrealistic values of P,
i.e., P of the order of T, do we find that random initial
conditions give us the splay state [18].

For smaller values of P, the system is chaotic. Each
laser describes a chaotic trajectory and the mean X is of
the order 1/v/N. InFig. 3 we have plotted the time series
of one laser and Fig. 4 shows its power spectrum for k; =
0.2, and P = 0.01. For these values only the splay states
with 0.979 < A < 1 are neutrally stable. The splay states
with other values of A are unstable. Apparently, the
basin of attraction for the stable splay states belonging
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FIG. 2. The values of X; for T = 108, a = 0, P = 0.01,
k1 = 0.2, and N = 10. The final state is a splay state (i.e.,

X = 0) and A was found to be approximately 0.2.
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FIG. 3. Time series of the real part of X; (N = 10,
P =0.01, and k7 = 0.2).

to this narrow range of A is too small, never allowing the
system to relax to the splay state, unless we start with
initial conditions very close to a stable splay state.

The narrow range of allowable splay states can have
important implications. If we have a neutrally stable
splay state for all values of A, it has been shown numer-
ically in a model describing globally coupled Josephson
junctions [15] that adding a noise term to the equations
will result in a diffusion on the solution branch of the
splay state. This was termed interhyperhedral diffusion
in [15]. To investigate this diffusion in our model we
have added a random term en;(z,t) to Eq. (1), where
€ is the noise strength and 7;(z,t) are é-correlated ran-
dom functions with zero width and unit variance. For
a = 0, the splay state is neutrally stable for all values
of A and adding a noise term leads to a diffusion on the
whole solution branch. This can be seen in Fig. 5.

For a = 5 however, such a diffusion cannot occur. The
splay states are only neutrally stable over a very small
range of A, which will prevent the system from wander-
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FIG. 4. The power spectrum of the time series in Fig. 3.
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FIG. 5. A as a function of time for the splay state with the
presence of a noise term. The parameters are the same as in
Fig. 2, with e =1 x 10™%.

ing over the whole branch. Indeed, numerically we have
found that adding a noise term to the equations will lead
to a diffusion confined to the very small neutrally stable
part of the branch, as can be seen in Fig. 6. If the noise
is too strong the system will be kicked out of the splay
state and will become chaotic.

In the region where neither one of the three states de-
scribed in Sec. II is stable, the dynamics of the system
depends critically on the number of lasers N. We will
not give an exhaustive and quantitative analysis of the
dynamics but will limit ourselves to a general description
of the observed behavior. For small values of N, typically
less than 10, we find that there is a region in which the
system relaxes to two clusters with population N; and
N; = N — Nj, respectively. The two clusters have differ-
ent amplitudes but the same frequency. This state loses
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FIG. 6. A as a function of time for the splay state with the
presence of a noise term. The parameters are the same as in

Fig. 2, with e =1 x 107%,
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its stability to a state where the clusters exhibit spiking
pulsations (see below).

We can determine the amplitudes, phase shift, and fre-
quency of the two clusters numerically. Since the clusters
have periodic dynamics we can describe the two clusters

by

X, = Rlei9t+¢1 ,

X2 — Rzeiﬂt+¢2 ,

X = [(1 - p)R1€*®? + pRae*#2)e™M |
Zi=(P-R)/1+2R) (i=12), ()
where p = 1/N;. Substituting this into the equations
for X; and X, we get four coupled nonlinear equations
for Ry, R,, €, and the phase difference A¢ = ¢y — ¢;.
These equations can be solved numerically to find the
cluster state.

Once we have the values of Ry, Ry, 2 and A¢ we can
calculate the stability of the two-cluster state. We replace
R; and Z; (j=1,...,N) in the full set of equations [Egs.
(1) and (2)] by R;+6; and Z; +z; where §; is complex, z;
is real and |d;],|z;] << 1. After linearizing the equations
the resulting 3N x 3N stability matrix can be solved. We
find two third-order polynomials with multiplicity N; —1
and N, — 1, respectively, which can be written as

MiraX4+br4+c=0, (18)
where the coefficients a, b, ¢ are given by

a=-2Z;+r;,
b= (Q+aZ)® + 2 +riRi — 28:Z;
c= si(Q + aZi)2 — riRi(aQ +7Z; + aZZ,') + siZi2 s (19)

where r; = 2R;(1 +22;)/T, s; = (1 + 2R?)/T, and i =
1,2 correspond to clusters 1 and 2, respectively. Note
that the multiplicity comes from the perturbations inside
the cluster with N; and N, lasers, respectively. Of the
remaining six eigenvalues, one is identical to 0, due to
the invariance of the system to a uniform phase shift,
and the other five are given by the roots of a fifth-order
expression which is too lengthy to display here.

As an example of the dynamics of the cluster state we
have taken as parameter values k; = —0.2 and P = 0.01.
Analytically, we find that all cluster states are unstable if
N > 10. Furthermore, for smaller values of IV, the only
periodic cluster state which is stable is the state in which
N — 1 lasers are in one cluster and the remaining one in
the other. Indeed, numerically we find a stable periodic
two-cluster state (N; = 8) if we start with nine lasers
but a nonperiodic two cluster state if we start with ten
lasers (N7 = 9). As an example of a case in which the
periodic two cluster state is stable, we have drawn the
region corresponding to N = 6 in Fig. 7. The periodic
two cluster state is stable in the region marked “Cluster.”
All the lines are determined analytically.

The dynamics in the case where the periodic two clus-
ter state is unstable is shown in Fig. 8, where we have
discarded the transients. The system remains in a two-
cluster state, but the clusters now exhibit a spiking pulsa-
tion. This type of spiking oscillation has also been found
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FIG. 7. The phase diagram for N = 6, showing the region
in which the two cluster state is stable.
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FIG. 8. The time series of X for k; = —0.2, P = 0.01 and
N =10.
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FIG. 9. The time series of X; for k; = —0.2, P = 1 and
N =10.
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in a numerical investigation of a model of modulated mul-
timode lasers [17]. The pulses are separated by periods
of the order of T. During this period the complex ampli-
tude is very small; X << 1 and Z grows exponentially
to the value corresponding to the off state. The off state,
however, is not stable and |X| starts to grow. We then
have a period in which X oscillates with a frequency of
the order 1/T, Z decreases rapidly and | X| pulses.

For larger values of P, the system no longer settles
into a two-cluster state and the dynamics is more com-
plicated. A time series for the case kxy = —0.2and P =1
is shown in Fig. 9. Remnants of the pulsations of Fig. 8
remain, remain, but the global dynamics is chaotic.

IV. DISCUSSION

In this paper we have investigated in more detail a
model of globally coupled lasers recently discussed by
Silber et al. We have determined the linear stability for
the general splay state, which can be characterized by

a parameter A with values between 0 and 1. We have
shown that, depending on the type of laser, there is either
a very narrow window of neutrally stable A or a very
large one. This can have important implications, since
the presence of a noise term leads to diffusion on the
solution branch.

For semiconductors lasers, there is a region in the pa-
rameter space where none of the simple states are stable.
Numerically we have found that the system relaxes in
a certain region of parameter space to a periodic two-
cluster state. We have calculated analytically the stabil-
ity of this cluster state and found that it depends criti-
cally on the number of lasers in the system.
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