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Noise-mediated dynamics in a two-dimensional oscillator:
Exact solutions and numerical results
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Abstract. – We derive a Fokker-Planck equation (FPE) to analyze the oscillator equations
describing a nonlinear amplifier, exemplified by a two-junction Superconducting Quantum In-
terference Device (SQUID), in the presence of thermal noise. We show that the FPE admits a
unique stationary solution and obtain analytical results for several parameters ranges. To solve
the FPE numerically, we develop an efficient spectral method which exploits the periodicity of
the probability density. The numerical method, combined with the exact solutions, allow us to
rapidly explore the noise-mediated dynamics as a function of the control parameters.

The study of nonlinear dynamical behavior in systems that undergo bifurcations via chang-
ing a control parameter is of considerable interest. Tuning these systems to the onset of the
bifurcation can lead to very large changes in the output in response to a very small exter-
nal perturbation, resulting in a high gain and great sensitivity to a “target” input or forcing
signal. Recent work has focused on the onset of spontaneous oscillations, via a saddle-node
connection, in one realization out of many sharing such dynamics: the two-junction (or “dc”)
SQUID [1]. The dc SQUID is characterized [2] by a two-dimensional (2D) set of dynamical
equations for the junction Schrödinger phase differences. Our interest in the SQUID stems
from its relevance as the most sensitive detector of magnetic fields. Experimental and nu-
merical results [3, 4] have shown that the optimal response of the SQUID to an input signal
occurs just beyond the bifurcation point. Noise, present from a variety of sources, can how-
ever change the dynamical response of the system and understanding the effect of noise on
the SQUID is of obvious importance.

In this letter, we examine the dynamics of a dc SQUID in the presence of thermal Johnson
noise generated in the resistive shunts; this manifests itself as white voltage noise sources
in the junctions. Previous calculations have been mostly numerical (e.g., [5]); instead, in
this letter we use a Fokker-Planck equation (FPE) approach which yields the possibility of
extracting analytic information. Our analytical results are compared against very efficient
numerical simulations of the FPE.

The SQUID dynamics are described by equations for the time-derivatives of the Schrödinger
phase differences δi across the (assumed identical) Josephson junctions [2, 4]:

τ δ̇i = Ib/2 + (−1)iIs − I0 sin δi, i = 1, 2. (1)
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The circulating current Is, induced in the loop by an external magnetic flux, is the experi-
mental observable of interest and can be written in the form βIs/I0 = δ1 − δ2 − 2πΦe/Φ0.
Here, τ = h̄/(2eR) is a characteristic time constant (R being the normal-state resistance of
the junctions), β ≡ 2πLI0/Φ0 the nonlinearity parameter, L the loop inductance, I0 the junc-
tion critical current and Φ0 ≡ h/2e the flux quantum. The two natural experimental control
parameters are the applied dc magnetic flux Φe and the dc bias current Ib, which we take to
be symmetrically applied to the loop. It is convenient to rescale time by τ and introduce a
scaled flux Φex ≡ Φe/Φ0 and bias current J ≡ Ib/(2I0). Inserting the Langevin noise sources
in the dynamics yields the system

δ̇1 = J − 1
β

(δ1 − δ2 − 2πΦex) − sin δ1 + ξ1(t),

δ̇2 = J +
1
β

(δ1 − δ2 − 2πΦex) − sin δ2 + ξ2(t), (2)

where ξi is white Gaussian noise having zero mean and correlation function 〈ξi(t)ξj(t′)〉 =
2Dδijδ(t − t′).

As mentioned above, this system exhibits two (in the absence of noise, distinct) regimes of
operation [4, 6]. For a fixed Φex, a saddle-node connection takes place when the bias current
J exceeds a critical value Jc. For J < Jc, the noiseless system has two fixed points, one stable
(a node) and one unstable (a saddle) [7]. This is the “superconducting regime” with the
potential energy function admitting of stable minima corresponding to a current conservation
2J = sin δ1 + sin δ2. For J > Jc the fixed points disappear and we obtain oscillatory solutions
whose frequency obeys the characteristic square-root scaling law [6]. This latter regime is the
so-called “running regime.” The properties of the solutions near the bifurcation have recently
been studied [6].

The coupled Langevin equations (2) lead to a Fokker-Planck equation for the probability
density ρ(δ1, δ2, t):

∂ρ

∂t
= D

[
∂2ρ

∂δ2
1

+
∂2ρ

∂δ2
2

]
− ∂

∂δ1
(v1 ρ) − ∂

∂δ2
(v2 ρ), (3)

and

v1(δ1, δ2, t) = J − 1
β

(δ1 − δ2 − 2πn − 2πΦex) − sin δ1,

v2(δ1, δ2, t) = J +
1
β

(δ1 − δ2 − 2πn − 2πΦex) − sin δ2, (4)

where v1,2 are the drift terms (with 2π-periodicity in δ1 and δ2), and the density function
is normalized,

∫ 2π

0

∫ 2π

0
ρ(δ1, δ2, t) dδ1 dδ2 = 1, with n chosen in order to obtain a periodic

continuation of the coefficients.
We are interested in finding solutions of the FPE for large time. This search is greatly

facilitated by the fact that the FPE has a unique stationary solution. This can be seen by
noting that the functional H(t) =

∫
ρ ln(ρ/ρ0) dδ1 dδ2, where ρ0 is the stationary solution, is

a Lyapunov function (see [8] and references therein). It then follows that such a stationary
solution is unique and globally stable.

For J = 0, we have found an exact (stationary) solution:

ρ0(δ1, δ2) = αe−
1

2βD (δ1−δ2−2πn−2πΦex)2e
1
D cos δ1e

1
D cos δ2 , (5)
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Fig. 1 – Comparison between the numerical solution of the Langevin equations (averaged over 10000
realizations) and the solution of the Fokker-Planck equation by the spectral method with N = M =
20 moments. Parameters are D = 0.1, J = 0.9, β = 1, and Φex = 0.2.

where

α =
[ ∫ 2π

0

∫ 2π

0

dδ1 dδ2e
− 1

2βD (δ1−δ2−2πn−2πΦex)2e
1
D cos δ1e

1
D cos δ2

]−1

. (6)

In the general case of J �= 0, information may be extracted when β is large. Making use of
the ansatz

ρ0(δ1, δ2) = e−
1

2βD (δ1−δ2−2πn−2πΦex)2Ψ(δ1, δ2), (7)

and expanding in powers of 1/β,

Ψ(δ1, δ2) = Ψ0 +
1
β

Ψ1 + O(1/β2), (8)

the zeroth-order term can be obtained:

Ψ0(δ1, δ2) = α e
1
D cos δ1e

1
D cos δ2f(δ1)f(δ2), (9)

with

f(δ1,2) =
∫ 2π

0

e−
1
D [Jη+cos(δ1,2+η)] dη, (10)

with α chosen to satisfy the normalization condition∫ 2π

0

∫ 2π

0

dδ1 dδ2e
− 1

2βD (δ1−δ2−2πn−2πΦex)2 Ψ0 = 1. (11)

For parameters values for which analytical progress is difficult to achieve one has to resort
to numerics. Direct simulation of the Langevin equations (2), as has been commonly done in
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Fig. 2 – Transfer characteristics for different noise values for two different values of the bias current
J (J = 0.35 in (a) and J = 0.85 in (b)). For the noiseless case, running solutions are present for
parameter values that lie between the two solid circles [4].

the dc SQUID repertoire (see, e.g., [5]), can be computationally intensive. For reasonably ac-
curate results one typically has to average over many realizations. This is particularly the case
for systems close to a bifurcation point where one has to distinguish between different stable
solutions. Numerical solutions of the FPE, on the other hand, can be obtained much faster.
Rather than using a finite-difference scheme we have used an efficient spectral method [9].

In this method, we expand ρ in a Fourier series,

ρ(δ1, δ2, t) =
∞∑

n=−∞

∞∑
m=−∞

rm
n (t)ei nδ1ei mδ2 , (12)

exploiting the 2π-periodicity in δ1, and δ2. Introducing this expansion into the Fokker-Planck
equation (3), we obtain the following hierarchy of ordinary differential equations for the mo-
ments rm

n :

ṙm
n = −D

(
n2 + m2

)
rm
n − i J(n + m)rm

n +
n

2
(
rm
n−1 − rm

n+1

)
+

m

2
(
rm−1
n − rm+1

n

)
+

+
n − m

β

∞∑
l=1

(−1)l

l

[
cos(2π lΦex)

(
rm+l
n−l − rm−l

n+l

) − i sin(2π lΦex)
(
rm+l
n−l + rm−l

n+l

)]
,

n = −∞, . . . ,∞, m = −∞, . . . ,∞. (13)

In practice, we numerically solve (13) for n = −N, . . . , N , and m = −M, . . . ,M , setting
rM+1
N+1 = r−M−1

−N−1 = 0. The number of modes is chosen such that the absolute error in ρ drops
below a given tolerance, typically 10−12. This number depends on the noise strength D and
increases when D decreases.

Once the moments are obtained, we can calculate the various quantities of interest. The
input-output transfer characteristic (TC) is a convenient descriptor of the system response
in terms of experimentally controllable or measurable quantities. The TC is a plot of the
average screening current (averaged over the phases) 〈Is(t)〉 vs. the external flux Φex, with
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Fig. 3 – Comparison between the analytical and numerical solution. Parameters are D = 0.1; (a) J =
0, β = 1, (b) J = 0.35, β = 5, and (c) J = 0.35, β = 1.

〈Is(t)〉 computed as

〈Is(t)〉 =
Io

β

∫ 2π

0

∫ 2π

0

dδ1 dδ2Is(δ1, δ2)ρ(δ1, δ2, t). (14)

In terms of the moments in our Fourier expansion, this becomes

〈Is(t)〉 =
I0

β

[
− 8π2

∞∑
l=1

(−1)l

l
Im

(
r−l
l e−i 2π lΦex

)]
. (15)

In fig. 1, we plot the average screening current 〈Is〉 as a function of time, obtained numeri-
cally by solving the Langevin equations (2) and by solving the FPE using the above-described
spectral method. The spectral method (with N = M = 20moments) is seen to provide
excellent agreement with the more conventional and time-consuming technique based on nu-
merically integrating the coupled stochastic differential equations (2). We have also verified
our spectral method by solving the FPE using a finite-difference algorithm. To achieve an
absolute error below 10−3 our spectral method required N = M = 10 moments while direct
simulations of the Langevin equations required N = 106 realizations (the error in this method
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Fig. 4 – Numerically obtained average frequency for D = 0 (solid line) and D = 0.1 (dashed line).
Parameters are Φex = 0.4, and β = 5. The inset shows a blow-up of the D = 0.1 curve near J = 0 on
a log-linear scale and illustrates the nonzero average frequency for small J .

Fig. 5 – Comparison between the average frequency obtained numerically and analytically. Note that
the agreement improves when β increases. Parameters are Φex = 0.4 and D = 0.1.

scales like
√

(1/N)). A speed comparison between the two methods revealed that our spectral
method was more than three orders of magnitude faster.

In fig. 2 we show the effect of the noise intensity on the TCs for two different values of the
bias current. In the noiseless case, the TC was obtained by solving eq. (2) (setting D = 0)
while in the noisy case the TC was obtained by direct numerical simulation of the FPE.
Figure 3 shows a comparison between the analytical and numerical solutions of the FPE for
different J and β. Figure 3(a) corresponds to J = 0 for which the analytical solution (5) is
exact. Indeed, the analytical and numerical solution are indistinguishable. Figure 3(b) shows
the TC for a large value of β (β = 5) and demonstrates that the zeroth-order term of our
expansion (9) already produces excellent results. In (c), for β = 1, we see that the analytical
solution starts to deviate from the numerical one.

Let us investigate the dynamics of the noisy system near the bifurcation point, where
the system is highly sensitive to input signals. We are particularly interested in the average
frequency of each junction, which is of importance to know the device operation regime. This
frequency, δ̇i, can be readily calculated by noting that 〈δ̇i〉 = 〈vi〉, since the white noise has
zero mean. In the FPE, the average drift is calculated as

〈vi〉 =
∫ 2π

0

∫ 2π

0

dδ1 dδ2vi(δ1, δ2)ρ0(δ1, δ2) (16)

which, in terms of the moments in our Fourier expansion, becomes

〈vi〉 = J − (−1)i〈Is〉 + 4π2 Re(r0
1). (17)

In fig. 4, we show the average frequency 〈δ̇i〉 as a function of J for the noisy (D = 0.1) and
noiseless case. In the absence of noise, there exists a sharp transition, which corresponds to the
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bifurcation point that separates the superconducting and running regimes. In the noisy case,
on the other hand, thermal fluctuations lead to a nonzero average frequency for arbitrary small
bias currents J . This is illustrated in the inset in fig. 4 which shows 〈δ̇i〉 near J = 0. Finally,
in fig. 5 we show a comparison between the analytical and numerical solution for fixed noise
level. As expected from the perturbation analysis, the agreement improves as β is increased.

To summarize, we have analyzed the dynamics of the dc SQUID in the presence of thermal
Johnson noise. Our approach consists of using the 2D Fokker-Planck equation associated with
the stochastic nonlinear Langevin equation. The advantage of this formulation is that it gives a
simpler picture of the dynamics, now described in terms of a probability density. This density
has been shown to evolve towards a stationary solution. For certain parameter values, we have
been able to find exact solutions while for other regimes in parameter space we have provided
an expansion. Finally, we have constructed a very efficient way of numerically solving the
FPE. It should be emphasized that the techniques described here are not limited to SQUIDs.
In fact, it can be used to describe the dynamics of a large class of nonlinear dynamical systems
with noisy input. We apply it to a prototype system (the dc SQUID) which is of considerable
interest as the most sensitive device to measure magnetic fields in a variety of physics and
biomedical applications. Furthermore, it should be stressed that the present study can be
extended to account for an external injection signal, arrays of globally coupled SQUIDs or
even modified potentials used to study ratchet effects in dc SQUIDs [10]. In the latter cases,
nonlinearities in the 2D Fokker-Planck can lead to the appearance of bifurcations, which might
be analytically tractable. These extensions are currently under investigation.
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