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Noise-Induced Coherence in Neural Networks
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We investigate numerically the dynamics of large networks ofN globally pulse-coupled integrate
and fire neutrons in a noise-induced synchronized state. The power spectrum of an individual
element within the network is shown to exhibit in the thermodynamic limitsN ! `d a broadband
peak and an additional delta-function peak that is absent from the power spectrum of an isolated
element. The power spectrum of the mean output signal exhibits only the delta-function peak.
These results are explained analytically in an exactly soluble oscillator model with global phase
coupling. [S0031-9007(96)01163-5]
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The response of dynamical system to noise has recei
considerable attention recently. Most of the work h
focused on cases where the noise was found to incre
the coherence of the system. One such case is stocha
resonance [1], where a particle in a bistable potential
subject to noise, in conjunction with a weak period
force. The inclusion of noise facilitates the switchin
of the particle between the two wells and leads to
increase in the signal-to-noise ratio of the output sign
The signal-to-noise ratio is further increased in the ca
of a chain of oscillators with a bistable potential [2]. I
has been shown that stochastic resonance is not lim
to systems with a bistable potential but can occur also
a single excitable element [3] and in spatially extend
excitable systems [4]. Furthermore, studies on the eff
of noise in globally coupled maps [5], in mathematic
models that display stable and unstable fixed points [6,
and in globally coupled oscillators [8] showed that nois
can induce a coherent response even in the absence o
external periodic force.

Excitable elements underlie many biological function
and are often subject to complex external stimuli whic
can be aperiodic in time and/or exhibit random variatio
in amplitude. Neurons in the brain are excitable un
that are connected to a large number of other neutro
(typically 1000–10 000 [9]). They can be stimulated b
signals from the external world or other parts of the bra
These signals are subject to synaptic noise. In a num
of situations, including seizures [10] and signal processi
in the visual cortex [11], large collections of neurons fir
synchronously and generate a coherent output signal.

In this Letter, we investigate the dynamics of larg
networks ofN globally coupled excitable elements tha
exhibit a globally synchronized state above a critic
noise threshold [12]. We focus on understanding ho
the dynamical behavior of an individual element withi
the network differs from that of an isolated element (i.e
not coupled to any other elements), as well as on t
mean output signal of all the elements. The main res
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of interest is drawn schematically in Fig. 1. The powe
spectrum of the individual element within the network
exhibits both a broadband peak and, in the thermodynam
limit, a delta-function peak that is absent from the powe
spectrum of an isolated element. The power spectru
of the mean output signal, in contrast, exhibits only
delta-function peak in that limit. We show that these
results can be qualitatively understood analytically in
noisy oscillator model with global phase coupling. It
is important to emphasize that the coherence in o
neural network is inducedsolely by noise in conjunction
with the global coupling, and not by a periodic externa
driving force as in standard stochastic resonance. It al
does not depend, as in earlier work in neural network
on a constant dc drive [13], the oscillatory nature o
the elements [14], special initial conditions [15], or an
additional cellular mechanism [16].

FIG. 1. Schematic drawing of the power spectra of the mea
output signal of an infinite noise-driven network (a delta
function at v0, the intrinsic frequency of the elements), the
signal of an individual element within this network (a delta
function atv0 plus a broadband peak atv0) and of the signal
of an isolated element (a broadband peak atv0).
© 1996 The American Physical Society
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The model we study numerically is the globally pulse
coupled integrate-and-fire model (IF) [17] modified t
include a relative refractory period:

t1
dhi

dt
 2hi 1

R
N

I
syn
i std 1 Rhistd , (1)

wheret1 is the membrane time constant and whereI
syn
i

describes the synaptic input current that decays with
time constantt2:

I
syn
i 

Z `

0
ds0 1

t2
e2s0yt2

NX
j1

Kij

FX
f1

dst 2 t
f
j 2 s0d .

(2)

Here,t
f
j denotes the firing time of thejth neuron,Kij the

coupling constant, andR the resistance. If the membran
potential hi reaches a threshold valueustd, the element
fires a delta-function pulse after whichhi is immediately
reset to zero. The threshold value for every element i
function of the time chosen as

ustd 

Ω
` t 2 tf # Tref ,
t3yst 2 tf 2 Trefd 1 u0 t 2 tf . Tref .

(3)
(4)

This models anabsolute refractory periodTref during
which an element cannot fire followed by arelative
refractory period. The relevant time scale during th
relative refractory period ist3yu0 and is chosen here to
be of the same order asTref. Finally, the noise term
hi is uncorrelated and taken to be Gaussian with me
khistdl  0 andkhistdhjst0dl  2Ddst 2 t0 ddij.

We have integrated Eqs. (1) and (2) numerically u
ing a second order stochastic Runge-Kutta method. W
have calculated the power spectra of (i) an isolated e
ment, Pisosvd, (ii) an individual element within the net-
work Pisvd, and (iii) the meanh 

P
i

1
N hi of all the

elements,Pmeansvd. The resulting signal of an individ-
ual element consists of a series of delta-function puls
at the firing times0 # t

f
i,j # T : histd 

P
j dst 2 t

f
i,jd.

The Fourier components ofhi are then given byhisvd P
j expf2ivt

f
i,kg from which we can compute the powe

spectrum defined asPisvd  T21kjhisvdhp
i svdjl. Pisvd

is averaged over different numerical runs and the norm
ization factor is introduced to ensure that it is independe
of T in the limit of largeT . The power spectraPisosvd
andPmeansvd are calculated in the same way.

Simulations reveal that noise can induce a drama
increase in the coherence of the global output sign
The increase is achieved when theN elements are
completely or nearly completely synchronized whic
leads to a coherent firing state. The noise-induced st
is sandwiched between two incoherent states at sm
and large noise levels. This is in agreement with rece
work on a model of stochastic rotator neurons [12]. T
illustrate the transitions to the incoherent states we ha
plotted in Fig. 2 the heightH of the peak in Pmean
normalized to the maximum height,Hmax, as a function
of the noise (solid circles). The first transition, for sma
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FIG. 2. The normalized height of the peak of the pow
spectrum as a function of the noise levelD for the mean
output signal of a network of IF neurons (solid circles) and f
an isolated element (open circles). The parameter values
t1  1, t2  0.1, t3  0.004, Tref  0.3, u0  0.01, F  5
(for both the isolated element and the network) andKij  1,
R  1, N  100 (for the network). We have checked tha
different parameter values give similar results.

noise levels, corresponds to the onset of synchronizat
and occurs on very short time scales, typically le
than 1–2 refractory periods. The second transition,
large noise levels, corresponds to the destruction
synchronization due to noise and occurs because so
elements are far from their rest state and cannot
entrained on the time scalest1 and t2 of the coupling
and membrane potential. In between the two transitio
H has a clear maximum for a nonzero noise level.

It is interesting to note that a single isolated IF eleme
exhibits also a transition from incoherent behavior to
more periodic behavior as the noise level is increased.
Fig. 2 we showH corresponding toPiso, again normalized
by Hmax, as a function ofD (open circles). For weak noise
the rate of escape over the threshold is very small and
resulting time series forh can be effectively described a
shot noise: the pulses are independent and have a Poi
distribution [18]. For larger noise levels escape events
more frequent and the mean time between two firing eve
approachesTref which leads to a coherence and an increa
in H. However, sinceTref is fixed the coherence for an
isolated element is, in contrast to networks, not destroy
by large noise.

In Fig. 3 we plot for a fixed noise level the powe
spectraPmean, Pi , and Piso. The noise level is chosen
such that the network is in the noise-induced cohere
state. Consequently,Pmean displays a sharp peak at a
frequency that is the inverse of the refractory period. Th
refractory period and hence the frequency of the peak
functions of the noise level. It can be clearly seen in t
figure that the peak of the global output signal is mu
higher and sharper than the peak for anisolatedelement
at the same noise level. We have found that the hei
3257
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FIG. 3. Comparison of the power spectra of the signal of
meansPmeand, of a individual element in the networksPid and
of an isolate elementsPisod. The parameter values are as
Fig. 2 with D  1023 andD  1024 (inset).

of the sharp peak scales asN while the width scales a
1yN. This indicates that in the thermodynamic limit th
peak becomes a delta function. The power spectrum
an individual element within the network displays a nea
identical sharp peak at the same frequency but has a
broadband peak at a different frequency than the sh
peak. In contrast to the latter, the broadband peak for
individual element within the network remains unchang
in the thermodynamic limit. Moreover, this peak is mu
higher than that for an isolated element which is still in
shot noise regime for this noise level as shown in Fig.

In the entire noise induced coherent regionPmean

displays a sharp peak that will approach a delta func
for infinite N. The broadband peak ofPi , however,
depends on the noise level. It is maximal near the h
noise level transition and minimal near the low noise le
transition (see Fig. 2). This can be seen in the inse
Fig. 3 where we have shownPmean and Pi for a smaller
noise level.

Our findings can be qualitatively understood as follow
the noise induces the elements to exceed the thres
value and to fire. For sufficiently strong coupling, th
results in a coherent synchronous state in the netw
which produces a sharp peak in the power spectrum.
we increaseN, the average noise decreases as1yN which
leads to a delta-function peak in the thermodynamic lim
An individual element within the network is driven b
the mean which results in a sharp peak that becom
delta-function peak for infinite networks. Each eleme
however, experiences its own nonzero noise that prod
a broadband peak. The broadband peak is independe
N and decreases for decreasing noise levels.

An analytical understanding of these spectra can
obtained in a model of globally coupled oscillators,qi 
eifi , of constant amplitude but varying phase who
dynamics is defined by
3258
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Ùfi  v0 1 Js f 1 fid 1 hi , (5)

where v0 is the intrinsic frequency of the oscillator,
J is the coupling strength,f is the mean phase,f 
1
N

P
fi, and khistdhjst0 dl  2Ddst 2 t0 ddij. There are

two motivations for studying this model. First, the fac
that the elements are excitable does not seem esse
once they have escaped and are entrained on the glo
limit cycle. Second, the amplification of the output signa
with increasing N is due to phase coherence of th
oscillators, which is captured by the coupling term i
Eq. (5). We are interested in calculating the avera
power spectrum of the order parameterqN 

1
N

P
qi:

Pmeansvd 
Z `

2`
kqN stdqp

N st 1 tdle2ivt dt (6)

with

kqN stdqp
N st 1 tdl 

1
N2

X
j,k

keiffj std2fkst1tdgl . (7)

In addition, we calculate the average power spectrum
an individual element within the network:

Pisvd 
Z `

2`
kqistdqp

t st 1 tdle2ivt dt . (8)

Exact expressions for these spectra can be derived by
rewriting (5) in the form

Ùui  2Jui 1 hi 1 J
Z t

m dt0 , (9)

where we have definedui  fi 2 v0t and where
m is the average noise:m 

1
N

P
hi with correlation

kmistdmjst0dl  2 D
N dst 2 t0ddij. Integrating this equa-

tion then gives

uistd  e2Jt
Z t

0
dt1eJti

"
hist1d 1 J

Z t1

0
m dt

#
. (10)

Finally, using the identity

keifuj std2ukst1tdgl  e2 1

2
kfujstd2ukst1tdgl , (11)

we obtain after lengthy but straightforward algebra that
the limit of largeN the power spectrum for the mean is
Lorentzian of the form

Pmeansvd  e2 D

2J

D
N

s D
2N d2 1 sv0 2 vd2

. (12)

As in our simulations, the peak height ofPmean scales as
N , the width scales as1yN , andPmean approaches a delta
function2p expf2Dy2Jgdsv 2 v0d asN ! `.

The power spectrum for an individual element withi
the network in the limit of large, but finite,N is given by
Pisvd  Pmeansvd 1 Isvd, where

Isvd  e2 D

2J

Z `

2`
dt cosfsv0 2 vdtge2aJjtj

3 hexpf2ase2aJjtj 2 1d 1 Nae2Jjtjg 2 1j
(13)
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anda  Dy2JN. Thus,Pi consists of two distinct parts:
Pmean and a peak centered aroundv0 that remains broad-
band and that can be written in the thermodynamic lim
as

Isvd  e2 D

2J

Z `

2`

dt cosfsv0 2 vdtg

3

√
exp

"
D
2J

e2Jjtj

#
2 1

!
. (14)

These results show that this simple model can capture
dependence onN of these power spectra in the noise
induced synchronized state: (1)Pmean becomes a delta
function in the thermodynamic limit and (2)Pi has the
same delta-function peak plus a broadband peak in t
limit. This model, however, does not reproduce the d
pendence on noise of these power spectra because
oscillatory and not excitable as the IF model. First, this o
cillator model does not exhibit the two transitions prese
in our excitable networks as shown in Fig. 2. Instead, bo
Pmeansvd andPisvd decrease exponentially withD and re-
duce to a delta function in the limit of vanishingD. Sec-
ondly, the broadband peak of an isolated element [obtain
by taking the limitJ ! 0 in Eq. (14)] is higher than the
peak of an individual element within the network, whil
the opposite occurs in the IF model because isolated e
ments exhibit shot noise. Finally, we note that in the osc
lator model the broadband peak is symmetrically cente
around the delta function. In our simulations, however, t
broadband peak is not symmetric and occurs at a differ
frequency than the sharp peak. This is simply due to t
asymmetry in the function describing the refractory perio
[Eqs. (3) and (4)].

In summary, we have investigated the noise-induc
coherent state in a globally coupled neutral network. T
power spectrum of the global output signal exhibits
sharp peak with a height that scales asN and that becomes
a delta function in the thermodynamic limit. The powe
spectrum of an individual element within this networ
displays the same sharp peak and an additional broadb
peak. Identical qualitative power spectra are reproduc
by a simple oscillator model with global phase couplin
demonstrating that the excitable nature of the eleme
is not crucial. Thus, these spectra should be presen
any excitable and oscillatory stochastic system with
coherent state. We have checked that a globally coup
FitzHugh-Nagumo model [19] produces similar result
The observed gain in coherence and synchronization
the network is achieved nearly instantaneously. Th
suggests the interesting possibility that neurons use no
to produce coherent signals. The global output signal
it
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that case should be markedly different from the outpu
signal of an individual element. This behavior could
potentially be investigated experimentally. Future wor
should also focus on the degree of excitability of th
network as well as the degree of connectivity.
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