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Motivated by recent observations in biological cells, we study Turing patterns in bounded regions where the
nonlinear chemical reactions occur on the boundary and where reagent transport occurs in the bulk. Within a
generic model, we formulate the stability problem and discuss the conditions for the occurrence of a Turing
instability. By choosing other model parameters to be unequal, we find that Turing patterns exist even in the
case of equal diffusion constants. Finally, a recently introduced computation technique is utilized to follow the
nascent pattern into the highly nonlinear regime.
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I. INTRODUCTION

One of the by-now familiar paradigms of pattern forma-
tion relies on the Turing instability which can occur in a
variety of reaction-diffusion systems �1�. This mechanism
requires an autocatalytic activation process coupled to a
longer-ranged inhibition. The instability itself is character-
ized by having a finite wave-vector mode go unstable even
as the steady-state solution remains stable to uniform pertur-
bations. Experimental realizations of Turing pattern forma-
tion via the use of gel reactors and comparisons to models
thereof have been extensively discussed �2–4�.

One of the primary motivations for Turing’s original sug-
gestion was that these models might provide insight into the
formation of biological patterns. Although it remains unclear
how widespread the Turing paradigm really is, there have
been several examples of multicellular systems which have
been argued to lie in this pattern-formation class �5,6�. Our
interest here, however, is to begin the investigation of Turing
patterns on the single-cell scale. A specific impetus is the
suggestion that reaction-diffusion patterns along the cell
membrane may be implicated in the gradient-sensing ma-
chinery employed by eukaryotic cells to perform directed
motion �chemotaxis�. One line of evidence for this idea
comes from the recent observation of spontaneous symmetry
breaking in amoeboid cells exposed to uniform chemoattrac-
tant signals �see Fig. 1� �7�. If instead the cell is presented
with a gradient, only one such spot forms and it is always at
the anterior. The simplest interpretation of this data is that
these cells use the external gradient to modulate an internal
Turing-unstable system. This idea was originally suggested
by Meinhardt �8�, but he did not explicitly formulate a
membrane-bound model.

Our goal here is not to propose a detailed model for this
specific system; this will be presented elsewhere. Instead, we
use a generic model to investigate the concept that Turing
patterns can appear on membranes wherein there occur non-
linear reactions involving bulk-diffusing species. Note that
this is different from previous studies of three dimensional
Turing patterns which modeled uniform reaction-diffusion
equations �9,10�. Models which couple intracellular diffusion
to surface reactions have appeared in several biological con-
texts �e.g., calcium waves �11� and MIN oscillations

�12,13��, but there has not to date been a general investiga-
tion of the Turing possibility. We will demonstrate the con-
ditions for the existence of the basic instability and will pro-
vide a computational paradigm �based on the phase-field
method� for investigating the resultant nonlinear state.

II. RESULTS

A. Stability analysis

Our model is a standard two-component reaction-
diffusion system where the reaction takes place on the �inner
part of� the bounding surface of some bulk region. On this
surface, we have

u̇m = − rdum + rau + f�um,vm� ,

v̇m = − pdvm + pav + g�um,vm� . �1�

The processes whereby the bulk species u, v exchange with
surface-resident ones um, vm are described by the desorption
coefficients rd and pd and adsorption coefficients ra and pa. A
specific example of the nonlinear production functions f , g
will be given later. The equations in the bulk, where no non-
linear chemistry takes place, are

u̇ = Du�
2u − �uu ,

v̇ = Dv�
2v − �vv

with as boundary condition for the normal derivatives

Du
�u

�n
= rdum − rau ,

Dv
�v
�n

= pdvm − pav .

For simplicity, we will first work in a two dimensional
circular region of radius R. The steady-state solution of the
model is straightforward. In the absence of bulk decay ��u

=�v=0� we have constant u and v in the bulk, equal, respec-
tively, to rdum

�0� /ra and pdvm
�0� / pa; the membrane concentra-
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tions satisfy f�um
�0� ,vm

�0��=g�um
�0� ,vm

�0��=0. With decay, the bulk
fields can be written as

u�r,�� = U�0�I0���u/Dur�/I0���u/DuR� ,

v�r,�� = V�0�I0���v/Dvr�/I0���v/DvR� . �2�

Here, and in the remainder of the paper, In represents the
modified Bessel function of the first kind of order n. The flux
condition arising from Eq. �2� leads to

U�0� =
rdum

�0�

ra + �Du�uI0����u/DuR�/I0���u/DuR�

with an analogous expression for V�0� involving p’s and the
v-field diffusivity and decay constant. These are then substi-
tuted into Eq. �1�, with the left hand sides set equal to zero,
yielding a pair of coupled nonlinear equations for the mem-
brane concentrations.

The stability calculation proceeds as follows. We assume
that um�� , t�=um

�0�+�umein�e�t; the corresponding perturba-
tion in the bulk field has the same angular and time depen-
dence and its amplitude is given by

�u�r� = AnIn����u + ��/Dur�/In����u + ��/DuR�

again with analogous expressions for v. Via the flux condi-
tion, we can determine that

An =
rd�um

ra + �DukuIn���ku/DuR�/In��ku/DuR�

with ku��u+�. Doing the same for V �thereby defining a Bn
coefficient� and substituting into a linearized version of Eq.
�1�, we obtain a 2�2 linear system,

��um = − rd�um + raAn + fu�um + fv�vm,

��vm = − pd�vm + vaBn + gu�um + gv�vm. �3�

The solvability of this system determines the growth rate �.
To illustrate this result, we focus on the specific case of

f�um ,vm�=a�um
2 vm−um� and g�um ,vm�=1−um

2 vm introduced
by Gierer and Meinhardt �14�. In general, the pair of coupled

nonlinear equations for the membrane concentrations can be
solved numerically. For our specific case, however, we can
solve these equations analytically. For the case without bulk
degradation, �u=�v=0, the solution is simply um

�0�=vm
�0�=1,

and thus U�0�=rd /ra and V�0�= pd / pa. With degradation, we
find three solutions for um

�0�: um
�0�=0 and

um
�0�,± =

− a ± �a2 − 4�Mu − a��Mva − MuMv�
2�Mu − a�

,

where Mu is given by

Mu =
− rd

��uDuI0����u/DuR�/I0���u/DuR�

ra + ��uDuI0����u/DuR�/I0���u/DuR�
.

Mv is given by a similar expression and vm
�0� can be found via

vm
�0�=1/ ��um

�0��2−Mv�. We will focus here on relevant nonzero
solutions for um

�0�, which turns out to be the negative root
solution.

In Fig. 2, we plot the the largest growth rate for the modes

FIG. 1. Response of a Dictyostelium cell to
global stimulation with 1-�M cAMP. The in-
creased fluorescence at spots along the membrane
is caused by the signal-induced attraction of
Green fluorescent protein fused to a transduction
protein containing a Pleckstrin-homology do-
main. The five pictures are �a� before stimulation;
�b�–�e� 7.5, 30, 47 and 68 secs. after stimulation.
From Ref. �7�

FIG. 2. The largest growth rate � as a function of pd for the first
four modes. Parameter values, in arbitrary dimensionless units, are
ra=rd= pa=Du=1, a=0.4, Dv=10, �u=�v=0.02, and R=8.
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n=0 through n=3 for a sweep over the parameter pd with
everything else being held fixed. The fact that there is a
range for which the n=0 mode has negative growth rate
whereas some higher n have positive ones indicate the exis-
tence of a Turing instability. Figure 3 shows a two parameter
phase diagram where we vary the diffusion constant Dv
�keeping Du fixed at 1� and the decay rate �v �keeping �u
fixed at 0.02�. As expected, long-range variation of the v
field as enabled by large Dv and small �v drive the n=1
instability. We note in passing that it is possible to tune the
system to a co-dimension two point for which the Turing
instability occurs simultaneously with an n=0 Hopf bifurca-
tion. We also note that it is straightforward to include diffu-
sion along the membrane. This inclusion leads in Eq. �3� to
the replacements rd→rd+n2Dum

and pd→pd+n2Dvm
, where

Dum
and Dvm

are the diffusion constants of um and vm, respec-
tively. Typical membrane diffusion constants are much
smaller than bulk diffusion constants. Thus for biological
realistic values of Dum

and Dvm
, membrane diffusion will

have an appreciable stabilizing effect only for large n modes.
Finally, in Fig. 2 both the diffusion and the desorption coef-
ficients are unequal. However, we have checked that a Turing
instability also exists for equal desorption coefficients and
unequal diffusion coefficients.

B. Simulations using the phase-field method

Let us now extend our calculations to three dimensions.
The stability calculation proceeds as before, with the only
difference being that the bulk solutions are now given by
modified spherical Bessel functions. To check the validity of
our stability results and to study the restabilized nonlinear
state, we performed numerical simulations of the equations
on a sphere of radius R. Unfortunately, traditional finite dif-
ference methods are not able to handle curved boundaries.
One solution would be to reformulate the problem using a
finite elements approach. Here, however, we have chosen to
utilize the phase-field method to numerically solve the origi-
nal system �15,16�.

This method has traditionally been used to solve a variety
of free boundary problems, including dendritic solidification
�17�, viscous fingering �18�, crack propagation �19,20�, and
the tumbling of vesicles �21�, but can also be applied to
tackle diffusional problems in stationary but complicated ge-
ometries �22,23�. It can handle the boundary conditions cor-
rectly and offers an accurate, computationally inexpensive
method that can be implemented with ease. Its main advan-
tage is that it avoids the need for explicit interface tracking
by introducing an auxiliary field that locates the interface and
whose dynamics is coupled to the other physical fields
through an appropriate set of partial differential equations. In
comparison to the more traditional boundary integral meth-
ods, the method is much simpler to implement numerically.

In our case, the equation of motion for the field u becomes

�u

�t
= Du

�� · ���� u�
�

− �uu + �rdum − rau�
��� ��2

K�
, �4�

where K is a normalization constant which depends on the

area A of the membrane: K=�dx���� ��2 /A. The time evolu-
tion for v is given by a similar equation. The phase field � is
chosen to have the explicit form

��r� =
1

2
+

1

2
tanh��r0 − r�/	� . �5�

Thus the phase field has the value +1 inside the cell, 0 out-
side the cell and varies between these two values across a
diffusive boundary layer of thickness 	. One can show that in
the limit of 	→0 the appropriate boundary conditions are
recovered �22�. Equation �4� is solved on a regular cubic grid
in a computational box that can easily fit the geometrical
object. The equations for the bulk diffusion were solved us-
ing an alternating-direction method while the equations for
the membrane variables um and vm were solved on all grid

points where ��� ��2 exceeds a certain threshold, namely 10−4.
In Figs. 4�A�–4�D�, we show snapshots of the time evo-

lutions of the u field on the membrane. As initial conditions
we started with uniform values for the fields plus a small
amount of noise in the u field. In Fig. 4�E� we plot the value
of u at one point of the membrane as a function of time. The
snapshots in Figs. 4�A�–4�D� correspond with the points la-
beled A–D. As we can see, after a transient, the uniform
solution destabilizes and a Turing pattern emerges on the
membrane. We have verified that a similar pattern arises
when using a smaller gridspacing, indicating the absence of
any grid induced effects.

C. Turing patterns for equal diffusion constants

The unusual ingredient of bulk diffusion, coupled to non-
linear membrane dynamics, leads to phenomena not seen in
ordinary Turing systems. In ordinary Turing systems, it can
be shown that a Turing instability cannot occur when all
diffusion constants are exactly equal ��24�, and references
therein�. Here, however, as in nonuniform multicellular sys-
tems �25�, it becomes possible for a Turing pattern to de-
velop even in the case Du=Dv. The necessary difference in
activator and inhibitor transport can then be provided by

FIG. 3. Phase diagram showing the stability boundary of the n
=0 �solid line� and the n=1 mode �dashed line�. Parameter values
are as in Fig. 2 but with pd
1.5. The modes are unstable to the right
of the curve.
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choosing other parameters �desorption, adsorption or decay
rates� to be unequal. An example of this case is shown in Fig.
5, where we plot the final, steady-state membrane concentra-
tion um along the membrane. The example is in a two dimen-
sional disk of radius R but we have verified that a similar
instability exists in three dimensions. As initial conditions,
we used uniform values of the fields plus a small perturba-
tion favoring the n=1 mode. In the case of equal diffusion
constants, we have also found time-varying inhomogeneous
solutions, corresponding to traveling-wave instabilities with
complex eigenvalues. In fact, this alternative instability
seems to be the dominant one for equal diffusion, although

we have not performed a completely systematic exploration
of parameter space. In passing, we note that a traveling-wave
mode is believed to be responsible for the intracellular oscil-
lations observed in E. coli �13�.

III. CONCLUSION

In summary, we have studied the generic properties of a
new class of Turing instability, one arising from restricting
the reactions to occur on a bounding membrane. This type of
dynamics is generic in signal transduction systems within
single cells. Interestingly, we found that in this system the
condition of a faster diffusion inhibitor no longer is neces-
sary and that Turing patterns exists even for equal diffusion
constants. Our results form the underpinning for more de-
tailed modeling of Turing patterns in specific biological con-
texts.
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