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Accurate cell division in Escherichia coli requires the Min proteins
MinC, MinD, and MinE as well as the presence of nucleoids. MinD
and MinE exhibit spatial oscillations, moving from pole to pole of
the bacterium, resulting in an average MinD concentration that is
low at the center of the cell and high at the poles. This concen-
tration minimum is thought to signal the site of cell division.
Deterministic models of the Min oscillations reproduce many ob-
served features of the system, including the concentration mini-
mum of MinD. However, there are only a few thousand Min
proteins in a bacterium, so stochastic effects are likely to play an
important role. Here, we show that Monte Carlo simulations with
a large number of proteins agree well with the results from a
deterministic treatment of the equations. The location of minimum
local MinD concentration is too variable to account for cell division
accuracy in wild-type, but is consistent with the accuracy of cell
division in cells without nucleoids. This finding confirms the need
to include additional mechanisms, such as reciprocal interactions
with the cell division ring or positioning of the nucleoids, to explain
wild-type accuracy.

dynamics � MCELL � FtsZ

The rod-shaped bacterium Escherichia coli reproduces by
elongating along its long axis, duplicating its genetic mate-

rial, and dividing symmetrically into two daughter cells. Wild-
type E. coli locates the plane of cell division at 0.5 � 0.013 of the
distance along the long axis of the cell (1). This accuracy is
surprising given that the cell apparently relies on the collective
action of individual molecules that are a few nanometers long to
measure the center of a cell that is a few microns long.

A variety of proteins are known to be involved in cell division
in E. coli. In particular, cell division is implemented mechanically
by a contractile ring formed predominantly by the FtsZ protein
(2); the location of the FtsZ ring determines the site of cell
division. During cell division, the bacterial chromosomes for the
daughter cells are collected into two nucleoids that segregate to
either side of the cell (3, 4) and fill much of the interior of the
cell. Formation of the FtsZ ring is inhibited by the presence of
the nucleoids (1, 5), leaving three bands in which to place the
FtsZ ring: either pole or the center. The Min proteins are
required for selection of the central band and precise positioning
within the central band (1). MinC inhibits formation of the FtsZ
ring, whereas MinD appears to recruit MinC (reviewed in ref. 6).
These proteins show dynamic changes in localization throughout
the cell (7–9). In particular, MinD oscillates from end to end of
the cell with a period of �40 s (7); averaged over many cycles,
MinD is at a higher concentration at the ends of the cell than in
the center. Another protein, MinE, forms moving bands inside
the cell and is required for MinD oscillations (10, 11). Thus,
dynamic oscillations of MinD and MinE set up a concentration
minimum of MinD at the center of the cell, leading to a low
concentration of MinC at the center and enabling FtsZ ring
formation at the cell’s midpoint but not at its poles (12). Of the
two mechanisms required for accurate cell division, the Min
system seems more important: in mutants missing MinC, MinD,
and MinE, placement of the plane of cell division is not restricted

to three tightly defined nucleoid-free regions, but rather is
broadly distributed (1). In nucleoid-free cells, the division ap-
paratus still assembles near the center of the cell, but with a
reduced accuracy of �0.062 rather than �0.013 cell lengths
(1, 5).

Because of the importance of the Min system and the unex-
pected dynamics of the proteins, a variety of models of Min
oscillations have been developed by using deterministic (13–18)
or stochastic methods (19). These models reproduce many of the
features of the biological system, including a concentration
minimum of MinD at the center of the cell. Deterministic models
of Min oscillations assume that there are a sufficiently large
number of proteins to treat their concentrations as continuous
variables. However, there are only a few thousand Min proteins
in an E. coli cell (20, 21). If MinD proteins were stationary, the
cell would have to position the FtsZ ring on the basis of only tens
of Min molecules locally. Oscillations provide an opportunity for
the cell to take multiple independent samples of Min concen-
tration, but it is not immediately apparent whether this temporal
averaging is sufficient to allow accurate midpoint determination.
Therefore, we asked whether, in the context of current models,
the observed accuracy of cell division could be achieved by
simply selecting the site at which the local MinD concentration
is lowest.

To answer this question, we constructed a stochastic simula-
tion of Min oscillations based on the reaction–diffusion scheme
of Huang et al. (16, 22). This scheme was an attractive choice for
three reasons. First, a deterministic analysis of the scheme
reproduces many features of the biological oscillations quite well.
Second, the scheme is based in biologically realistic interactions.
Third, the scheme is of a form that is immediately suitable for
simulation in the stochastic modeling program MCELL (23, 24).
Using MCELL, we reproduced the results of the deterministic
analysis for a large number of molecules and demonstrated
robust oscillations that can be disrupted by decreasing the
number of Min proteins in the cell. In addition, we have
examined the accuracy with which the cell could determine its
midpoint if it made its decision based solely on finding the
minimum local MinD concentration. The scheme can account
for the accuracy of cells without nucleoids, but fails to reproduce
the accuracy of wild-type cells.

Methods
Monte Carlo Modeling of Min Oscillations. MCELL is a Monte Carlo
modeling program for cellular microphysiology. It has been
described in detail elsewhere (23) and has been validated
extensively. In brief, it represents cell membranes and other
boundaries as arbitrary triangulated surfaces specified by the
user, and represents each molecule as a point diffusing within
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those boundaries. Each molecule diffuses stochastically by pick-
ing a distance and direction of motion consistent with diffusion
of a point source over some short time step, and travels in a
straight line to reach that endpoint. A moving molecule reflects
when its path intersects an impermeable surface element, and
reacts stochastically when its path of motion intersects another
molecule. The probability of each reaction is set by specifying a
bulk rate constant, which is then internally converted into the
appropriate probability of reaction per collision. A stochastic
MCELL model consists of a series of chemical reactions specifying
the rates of reaction, the diffusion constants for the diffusing
molecular species, and a model geometry. We used a new version
of MCELL that allows variable-length time steps; for our models
of Min oscillations, this reduced the run time of the simulations
by an order of magnitude.

The Huang et al. scheme (16) uses a series of chemical
reactions (illustrated in Fig. 1A)

MinDADP O¡
k1

MinDATP

MinDATP � �m� O¡
k2

MinD(m)

MinDATP � MinD(m) O¡
k3

2MinD(m)

MinDATP � MinDE(m) O¡
k3

MinDE(m) � MinD(m)

MinE � MinD(m) O¡
k4

MinDE(m)

MinDE(m) O¡
k5

MinDADP � MinE.

Here, (m) alone refers to a patch of membrane without anything
bound to it, and (m) after the name of a molecular species
indicates that the molecule is bound to the membrane. This series
of chemical reactions, in contrast to the systems of equations
used in other Min system models (13–15), is immediately suitable
for simulation using MCELL. Each patch of membrane can be
occupied by at most one molecule, so the self-aggregation
reactions with rate k3 require searching for a free patch of
membrane for the new MinD(m) molecule. Because the deter-
ministic equations do not include a term for depletion of binding
sites, we used a fairly large value for the search radius (50–100
nm). Moderate changes to this value did not significantly change
our results (data not shown). The values used for the reaction
rates are given in Table 1. In the default simulations with 5,400
proteins, there were 4,000 membrane-binding sites per �m2. The
diffusion constants for MinDADP, MinDATP, and MinE were 2.5
�m2�s. Membrane-bound molecules were not allowed to diffuse.

Model Geometry. We created a simple 20-sided polyhedral cylin-
der of 4-�m length with a 0.5-�m radius, as shown in Fig. 1B. For
computational efficiency, we also created a model geometry
consisting of a 4-�m-long rectangular box with sides of length
���2, preserving the volume of the model cell, and decreased
the rate constant k2 for the side walls by a factor of ���2 to
account for the increased surface area and hence increased
number of binding sites. By default, the model was populated
with 5,400 molecules, as in ref. 16, with varying ratios of MinD
to MinE. Initially, all MinE molecules were placed along the
central axis 0.25 �m from one pole of the cell, and all MinD
molecules were placed in ADP-bound form 0.25 �m from the
opposite pole. To compare simulation results with experimental
results, we ran all simulations for 20 min of simulated time

(approximately one cell division cycle in exponential growth
phase); this represents the maximum time a cell has to measure
MinD concentrations. We did not change the cell length during
the simulation.

Deterministic Modeling of Min Oscillations. To compare the results
from our stochastic simulations with deterministic solutions of
the reaction scheme, we numerically integrated the equations of
ref. 16, along with its parameter values, using a simple explicit
time-stepping routine. Space was discretized by using a cubic (for
the box geometry) or cylindrical (for the cylinder) grid with a
grid spacing of 0.05–0.1 �m. We verified that a smaller grid
spacing did not change the results appreciably (data not shown).

Measurement of Concentration and Oscillation Period. The local
concentrations of Min proteins were determined by dividing the
model cell into nb � 800 bins of equal width along its long axis.
The number of proteins in each bin was converted into a
concentration, with a concentration of 2.7 �M corresponding to

Fig. 1. Reactions and geometry of the stochastic Min oscillation model. (A)
Reaction cycle. Cytosolic MinD in its ADP-bound form converts to an ATP-
bound form with rate k1. MinD-ATP binds to the membrane alone with rate k2,
and membrane-bound MinD (with or without MinE) catalyzes its own addi-
tion to the membrane at rate k3. Cytosolic MinD binds membrane-bound
MinD with rate k4. Finally, the MinE�MinD complex dephosphorylates and
dissociates into cytosolic MinE and MinD-ADP at rate k5. (B) Snapshot of a
simulation running inside a 4-�m-long, 0.5-�m-radius triangulated cylinder
(transparent surface) after 3 min of simulated time. Each colored dot is a single
molecule. Colors for each state are from A. There are 5,400 proteins and a
MinD�MinE ratio of 4.0.

Table 1. Reaction rates for the stochastic Min model in
cylindrical geometry

Variable k1 k2 k3 k4 k5

Value 1.0 3.8 � 104 9.0 � 105 5.6 � 107 0.7
Units s	1 M	1 � s	1 M	1 � s	1 M	1 � s	1 s	1
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one molecule per bin. Concentrations were measured every �t �
0.1 s. We verified that using �t � 0.2 s gave equivalent results.

To quantify the fluctuations in the oscillation period, we
defined the instantaneous oscillation period Tosc(t) as the period
that gave maximal correlation between MinE concentration
profiles before and after t. For details, see Supporting Text, which
is published as supporting information on the PNAS web site.
We then computed the mean oscillation period T� osc by taking the
mean of the instantaneous oscillation period over the �14 min
of the trace for which it was defined [20 min, minus 180 s to allow
any initial transients to subside, minus �200 s used as a window
in the computation of Tosc(t)]. Similarly, we quantified the
variability by computing the standard deviation of the instanta-
neous oscillation period.

Variable Stochasticity with Constant Dynamics. A bimolecular re-
action of the form A � B 3 C can be written as a differential
equation Ċ � k � A � B, where capital letters denote the
concentration of the corresponding molecule. Increasing the
concentrations by a factor of � yields �Ċ � �2k � A � B.
Replacing k with k�� recovers the original equation and the
original time course. Therefore, to run a simulation with N
proteins instead of 5,400 while preserving the original dynamics,
we replaced k3 and k4 with k3 � 5,400�N and k4 � 5,400�N,
respectively. The number of binding sites was also increased by
N�5,400 to preserve the fractional depletion of binding sites, and
k2 was replaced by k2 � 5,400�N.

Estimation of Maximum Accuracy. To estimate the accuracy of cell
division generated by picking local MinD concentration, we first
divided the cell into 800 bins (5 nm per bin) and computed the
membrane-bound MinD concentration in each bin. We then
averaged the concentration in each bin over the lifetime of the
cell (20 min) and applied a Gaussian blur of varying widths � to
represent the distance over which MinD can influence FtsZ ring
formation. The bin with the lowest value was considered to be
the local MinD-defined division site. To parameterize the ac-
curacy, we computed the rms of the distances between the local
MinD-defined division site on each trial and the midpoint of the
cell.

For the default case (5,400 proteins, MinD�MinE � 4.0), we
obtained the distribution of MinD-defined minima by perform-
ing 82 separate 20-min long simulations (results shown in Fig.
4D). Because each simulation takes �5 h on a 2.4-GHz AMD
Opteron processor, this method was computationally too costly
to allow a systematic exploration of parameter space. Therefore,
we mimicked the concentration profiles by fitting a fourth-order
polynomial to concentration profiles obtained from simulations,
and then generating noise about that polynomial with the same
power spectrum as found in the simulation. For details, see
Supporting Text. To estimate the distribution of MinD-defined
minima, we generated 1,000 mimicked concentration profiles
based on five simulations and computed the positions of the
minimums as described above. For the default case, the mean
estimated distribution was 10–15% tighter than the distribution
produced from 82 separate simulations. Therefore, this method
leads to a slight overestimate of the accuracy of the local
MinD-defined division site.

Results
Comparison Between Stochastic and Deterministic Model. A stochas-
tic model of MinD and MinE oscillations was constructed
following the deterministic set of reactions of Huang et al. (16),
summarized in Fig. 1. To verify that the stochastic simulations
could faithfully reproduce the deterministic results, we plotted
the MinE concentration along the long axis of cell as a function
of time and used this to compare the results from three different
simulations: a stochastic simulation of the reactions in a cylin-

drical cell 1 �m in diameter and 4 �m long (shown in Fig. 1B),
a stochastic simulation of the reactions in a rectangular cell of the
same length and matched volume and surface reaction rates, and
a deterministic simulation in a rectangular cell that directly
implements the equations from ref. 16. As shown in Fig. 2A, all
three simulations gave qualitatively similar results for the pa-
rameters we chose initially (the same as in ref. 16, except with a
MinD�MinE ratio of 4.0).

MinE waves in the cylindrical and box stochastic models (Fig.
2A) were accompanied by noise with two related components.
First, the concentration fluctuated from time point to time point,
as expected from any model with a finite number of discrete
particles. Second, the period of the oscillation fluctuated from
cycle to cycle, as determined by observing the time between
successive waves of MinE reaching one end of the cell. To
quantify these fluctuations, we computed the instantaneous
oscillation period over time (Fig. 2B) by measuring the time
between maximally correlated MinE concentration profiles (see
Methods and Supporting Text).

To test whether the results differed quantitatively between
cylindrical and rectangular geometry, we ran the stochastic
simulations several times using different random number
streams (n � 82 for the rectangular box, n � 10 for the cylinder)
and calculated the average oscillation period. The average
period was 64.0 s for the cylinder and 63.1 s for the box, a
statistically significant but minor difference (P 
 0.01, Mann–
Whitney rank-sum test). Because simulations using the box
require less computation, we used that model for our subsequent
analysis. We also verified that a model cell with rounded endcaps
displayed similar quantitative results (data not shown).

To assess the accuracy with which the stochastic simulations

Fig. 2. Validation of the stochastic simulations. (A) Qualitative agreement
between models. MinE concentration along the long axis of the cell (vertical
axis) is plotted over time (horizontal axis). MinE moves from pole to pole of the
cell in the stochastic simulations with cylindrical geometry (Cyl). Similar pat-
terns are seen in a stochastic simulation run in a box (Box) and in a determin-
istic solution in a box (Det). (B) Stochastic fluctuations in oscillation period. The
instantaneous oscillation periods for the cylindrical (thin line), box (thick line),
and deterministic models (gray line) are shown. The data are from A. (C)
Quantitative agreement between models. Oscillation periods are shown
(diamonds) along with the means (large bars) and standard errors (small bars)
for three simulations: cylindrical (n � 10 different random number streams),
box (n � 82), and deterministic box.
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reproduce the deterministic result, we compared the stochastic
and deterministic treatment of the box model. The period for the
deterministic solution is 65.4 s, a modest but statistically signif-
icant increase (P 
 0.001, t test) over the value from the
stochastic simulations. This difference may be caused by the lack
of discrete membrane binding sites in the deterministic solution;
in the stochastic model, the cooperative interactions create
clusters of membrane-bound MinD with all nearby binding sites
depleted, whereas in the deterministic solution, membrane
concentration varies smoothly and without limit.

Stochastic Disruption of Oscillations. To explore the effects of
stochasticity in our model, we adjusted the protein number
without altering the expected deterministic dynamics (see Meth-
ods). The number of proteins was varied from 10,800 down to 540
(Fig. 3A). The varying levels of stochasticity manifested in two
ways. First, the local f luctuations in concentration from time
point to time point became more apparent as the number of
proteins was decreased (visualized as increasing ‘‘snow’’ in the
concentration plots). Second, the oscillations ceased to be
reliable for models with less than �1,500 proteins, although
transient oscillatory behavior could still be observed (Fig. 3A).

We also varied the MinD�MinE ratio (hereafter D�E), which
sets the oscillation period, to assess whether the magnitude of
stochastic effects varied with period. As D�E was reduced to the
minimal value that has a deterministic solution, the stochastic
simulations became more sensitive to the number of proteins. To
quantify the disruption of oscillations by noise we calculated the
coefficient of variation (CV) of the oscillation period. Because
unstable oscillations have a highly variable (and often ill-
defined) oscillation period, the CV can be used to quantify the
stability of oscillations.

With large numbers of proteins and high values of D�E,
oscillations were stable and displayed a CV of �0.05, regardless
of protein number or D�E ratio (Fig. 3B). Decreasing protein
number eventually caused instability, with greater instability
displayed for the fastest oscillations (low D�E ratio). Although
a D�E value of 2.7 has a dynamic deterministic solution, we did
not observe oscillations in any of the stochastic simulations at
that value. Thus, in contrast to ref. 19, stochastic effects appear
to dampen rather than drive oscillations in this model. We then
examined the oscillation period of stable oscillations (specifi-
cally, oscillations with CV 
 0.15). Within this region of stability,
the oscillation period did not depend on the number of proteins
and showed good agreement with the deterministic solution
(Fig. 3C).

Accuracy of Midpoint Determination. The key event in determining
the accuracy of cell division is the placement of the FtsZ ring.
Unfortunately, the mechanism of interaction between the Min
proteins and the FtsZ proteins is not understood in much detail,
and save for ref. 13, the localization of FtsZ has not been part
of deterministic models. Thus, we did not directly incorporate
FtsZ ring formation in our model. However, it is known that
membrane-bound MinD recruits MinC, and MinC inhibits FtsZ
ring formation. Therefore, we tested the following hypothesis:
the cell only uses local interactions and chooses the position of
the FtsZ ring based solely on the local MinD concentration. If
this hypothesis is correct, then the position at which local MinD
concentration is a minimum should define the center of the cell,
and the accuracy of this positioning would represent an upper
bound on the accuracy the cell can achieve. Because the precise
duration over which MinD concentration is averaged is not
known, we averaged for a full cell division cycle of 20 min.

We first plotted the membrane-bound MinD concentration
along the length of the cell averaged over 20 min of oscillations
with 5,400 proteins and D�E � 4.0 (black line in Fig. 4A). The
shape of the profile was very nearly quadratic with a minimum

at the cell center. To determine the depth of this minimum, we
compared the central membrane-bound MinD concentration
with the mean concentration (Fig. 4B). Both deterministic and
stochastic simulations showed central minima that varied with
D�E, but the stochastic simulation had a deeper minimum with
parameters that gave stable oscillations. As before, the differ-
ence between the two curves is most likely due to the existence
of discrete binding sites in our stochastic simulations.

The distance over which MinD can affect the FtsZ ring is not
known. Therefore, we picked cell division sites by selecting the
minimum membrane-bound MinD concentration after smooth-

Fig. 3. Stochastic effects on oscillation period. (A) Oscillations are disrupted
by decreasing protein number. MinE waves are plotted for the deterministic
case (�) and for stochastic models with decreasing numbers of proteins
(indicated on left). In all cases, the total MinD�MinE ratio is D�E � 4.0, and the
reaction rates have been altered to match the deterministic case (see Meth-
ods). (B) Rapid transition from stable to unstable oscillations. The coefficient
of variation of the period of oscillation was determined for D�E ranging from
2.7 to 4.0, and protein numbers ranging from 540 to 10,800. Stable oscillations
produce a low coefficient of variation in the period. The deterministic model
has no dynamic solution for D�E � 2.6. (C) Dependence of oscillation period on
MinD�MinE. Shown is the mean oscillation period for a range of D�E values
(indicated on right) and protein number (horizontal axis). Error bars indicate
standard deviation of the period. Only stable oscillations are shown (CV 
 0.15
from B).
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ing with a Gaussian blur of various widths to approximate
different interaction distances (Fig. 4C). A width of � � 500–750
nm was needed to produce accuracy comparable to wild-type
(0.013 cell lengths as reported in ref. 1, or a midpoint error of
1.3%; n � 82 simulations). Both the time scale (18 min) and
spatial scale (�1 �m) are surprising for local interactions with
filaments with a lifetime of 8 s (25, 26) and a width of tens of
nanometers. If we restricted the interaction distance to the size
of a typical macromolecular complex (� � 50 nm), accuracy
decreased to �6%, similar to the value of 6.2% observed in cells
without nuclei (1).

Although our model does not include nucleoid exclusion
mechanisms, we wondered whether a different choice of param-
eters could reduce the midpoint error in the model without

having to assume long-range interactions between MinD and
FtsZ. To reduce the computation required, we devised a method
to mimic concentration profiles by replicating the noise observed
in five simulations; this gave good agreement with the distribu-
tion of errors found from running a full set of 82 simulations (Fig.
4D; � � 50 nm). We then computed midpoint errors over a range
of parameters (Fig. 4E). An accuracy of 4–7% was observed
when either D�E ratios were high or the number of proteins was
large; low D�E ratios coupled with small numbers of proteins led
to division sites generated at uniformly at random. Once stable
oscillations had been attained, increasing D�E or protein num-
ber only caused a slight improvement in accuracy, and accuracy
stayed in the 4–7% range. Therefore, although the local MinD
concentration cannot directly determine the cell midpoint to
wild-type accuracy in our model, it can robustly account for the
accuracy in the absence of nucleoids.

Discussion
Stochastic Effects on Min Oscillations. Our results show that the
oscillation period in the stochastic simulations depends only
weakly on the number of proteins and approaches the deter-
ministic solution if the number of particles is large. However, if
this number is below a critical value, oscillations fail. As shown
in Fig. 3C, this value depends on the MinD�MinE ratio. A direct
comparison of this value with experiments is difficult. Shih et al.
(21) measured 2,000 MinD proteins and 1,400 MinE monomers
(700 functional dimers) per cell. These values correspond to a
model with 2,700 proteins and a MinD�MinE ratio of 2.85, a set
of parameters that does not produce stable oscillations with our
model, at least not with the rates taken from ref. 16. However,
if the proteins are maintained at constant concentration, a
4-�m-long cell about to undergo cell division would have ap-
proximately twice that number (5,400 total, as in ref. 16),
bringing the system closer to stability. To perform a more
accurate comparison, it would be helpful to estimate the number
of proteins in an individual cell and then run simulations with the
same number of proteins in the same geometry.

Our model predicts that the depth of the minimum of average
MinD at the center of the cell would be relatively constant except
for parameters that were close to the limit for supporting
oscillations. Furthermore, our results show that a very pro-
nounced minimum in MinD concentration is unlikely. Fluores-
cence microscopy has revealed a MinD profile similar to what
our model predicts (17), although for total MinD, not mem-
brane-bound MinD. Further quantitative microscopy should
help test the predictions of this model.

Midpoint Determination. Two poorly understood mechanisms
work together to ensure an accurate cell division: nucleoid
occlusion and the Min signaling system. In particular, the details
of the nucleoid occlusion mechanism remain elusive, although it
has been suggested that it is only responsible for restricting the
possible division site to three regions (middle and poles),
whereas the Min system is the main determinant of the midpoint
determination. However, our results indicate that a simple
scheme of determining the location for cell division by selecting
the minimum MinD concentration in a local area, averaged over
a cell’s lifetime, is not sufficiently accurate to reproduce biolog-
ical results. Because selecting a minimum in MinD concentration
is also a difficult problem for the cell that could be affected by
additional stochasticity in the selection mechanism, the results
presented here should be viewed strictly as a lower bound on the
error.

It is possible, of course, that refinements within the reaction
scheme of the Min signaling system could improve the accuracy.
For example, MinD forms long polymeric chains in bacteria (27,
28); in the model, MinD tends to cluster in unstructured rafts.
The polymerization of MinD may impose geometrical con-

Fig. 4. Midpoint determination accuracy. (A) Membrane-bound MinD av-
eraged over 20 min of oscillations in a rectangular box with MinD�MinE � 4.0
and 5,400 proteins. Average MinD concentration (black line) can be approx-
imated as a fourth-order polynomial (gray line). (B) Depth of MinD concen-
tration minimum at true midpoint of cell, measured as central value divided
by mean value. The central value was taken from the polynomial fit to the
stochastic data. (C) Accuracy of MinD minimum. Interaction distances were
approximated as a Gaussian blur of the concentration profile, and the position
of minimum MinD was measured on each smoothed profile. Midpoint error
(solid line) is the mean rms distance between the true midpoint and the MinD
minimum, measured as a fraction of cell length. Experimentally determined
errors (from ref. 1) for wild-type (dashed line) and anucleate cells (dotted line)
are included for reference. (D) Distribution of errors. Cumulative probability
distribution of the midpoint error is shown for 82 full simulations (black line)
and for 1,000 mimicked data sets (gray line) generated from 5 of the 82
simulations. The interaction distance was set to 50 nm. (E) Comparison with
experimental data. A total of 1,000 mimicked data sets were generated from
five simulations for each value of the parameters shown. Shown is the rms
distance between the true cell midpoint and the MinD minima in the mim-
icked data sets.
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straints that are not captured by the simple model of MinD
recruitment used here. For example, a model of MinD coils that
alternately grow from opposite ends of the cell, as suggested in
ref. 28, might result in a markedly steeper dip in MinD concen-
tration, allowing greater accuracy. Alternatively, the interaction
between MinD and the FtsZ ring may not be one-way. Models
incorporating mutual antagonism between FtsZ ring formation
and MinD coil formation may lead to a central FtsZ ring that is
pushed from side to side by each wave of MinD, but which also
prevents MinD from crossing. The nucleoids could then simply
be responsible for starting the FtsZ ring in a reasonable range.
Interaction dynamics such as these, if they exist, may be visible
experimentally in bacteria expressing cyan and yellow fluores-
cent protein-labeled MinD and FtsZ.

Another possibility is motivated by noticing that the simulated
reaction scheme we used for the Min signaling system is con-
sistent with experiments that show that anucleated cells, obvi-
ously lacking the occlusion mechanism, display a greatly reduced
cell division accuracy (1, 5). In fact, over a wide range of model
parameters, the division accuracy obtained in our stochastic
simulations is comparable to the accuracy obtained in these
experiments (see Fig. 4D). This finding suggests that our model
may capture the essential stochastic features of the Min system
but needs to be expanded with a description of the nucleoid
occlusion mechanism.

How might this nucleoid occlusion mechanism function? Our
results indicate that this mechanism should not merely restrict
the possible FtsZ ring formation sites but should be actively
involved in midpoint determination. Further evidence for such
an active role comes from experiments showing that cells missing
the Min proteins have abnormally localized nucleoids (29).
Perhaps the Min system has a twofold effect on cell division
accuracy: a direct effect on FtsZ localization, transduced by
MinC and based on local MinD concentration; and an indirect
effect where MinD concentration acts to properly structure and
position the nucleoids over a relatively long integration time, and
nucleoid exclusion refines the position of the FtsZ ring. This
model is appealing because it suggests a physical mechanism for
averaging MinD concentration over a large fraction of the cell,
which, as we have shown, can improve accuracy to the needed
level.
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